我从列表列表中创建了一个DataFrame:
table = [
['a', '1.2', '4.2' ],
['b', '70', '0.03'],
['x', '5', '0' ],
]
df = pd.DataFrame(table)
如何将列转换为特定类型?在本例中,我想将列2和列3转换为浮点数。
是否有一种方法可以在转换到DataFrame时指定类型?还是先创建DataFrame,然后循环遍历列以更改每列的类型更好?理想情况下,我希望以动态的方式进行此操作,因为可能有数百个列,而我不想确切地指定哪些列属于哪种类型。我所能保证的是每一列都包含相同类型的值。
熊猫>= 1.0
下面这张图表总结了熊猫身上一些最重要的基因转换。
到字符串的转换是简单的.astype(str),图中没有显示。
“硬”与“软”转换
注意,这里的“转换”既可以指将文本数据转换为实际数据类型(硬转换),也可以指为对象列中的数据推断更合适的数据类型(软转换)。为了说明区别,我们来看一下
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': [4, 5, 6]}, dtype=object)
df.dtypes
a object
b object
dtype: object
# Actually converts string to numeric - hard conversion
df.apply(pd.to_numeric).dtypes
a int64
b int64
dtype: object
# Infers better data types for object data - soft conversion
df.infer_objects().dtypes
a object # no change
b int64
dtype: object
# Same as infer_objects, but converts to equivalent ExtensionType
df.convert_dtypes().dtypes
熊猫>= 1.0
下面这张图表总结了熊猫身上一些最重要的基因转换。
到字符串的转换是简单的.astype(str),图中没有显示。
“硬”与“软”转换
注意,这里的“转换”既可以指将文本数据转换为实际数据类型(硬转换),也可以指为对象列中的数据推断更合适的数据类型(软转换)。为了说明区别,我们来看一下
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': [4, 5, 6]}, dtype=object)
df.dtypes
a object
b object
dtype: object
# Actually converts string to numeric - hard conversion
df.apply(pd.to_numeric).dtypes
a int64
b int64
dtype: object
# Infers better data types for object data - soft conversion
df.infer_objects().dtypes
a object # no change
b int64
dtype: object
# Same as infer_objects, but converts to equivalent ExtensionType
df.convert_dtypes().dtypes
当我只需要指定特定的列,并且我想要显式时,我使用(per pandas. datafframe .astype):
dataframe = dataframe.astype({'col_name_1':'int','col_name_2':'float64', etc. ...})
所以,使用原来的问题,但提供列名…
a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['col_name_1', 'col_name_2', 'col_name_3'])
df = df.astype({'col_name_2':'float64', 'col_name_3':'float64'})