我有一个没有头的csv文件,有一个DateTime索引。我想重命名索引和列名,但使用df.rename()只重命名列名。错误吗?我的版本是0.12.0

In [2]: df = pd.read_csv(r'D:\Data\DataTimeSeries_csv//seriesSM.csv', header=None, parse_dates=[[0]], index_col=[0] )

In [3]: df.head()
Out[3]: 
                   1
0                   
2002-06-18  0.112000
2002-06-22  0.190333
2002-06-26  0.134000
2002-06-30  0.093000
2002-07-04  0.098667

In [4]: df.rename(index={0:'Date'}, columns={1:'SM'}, inplace=True)

In [5]: df.head()
Out[5]: 
                  SM
0                   
2002-06-18  0.112000
2002-06-22  0.190333
2002-06-26  0.134000
2002-06-30  0.093000
2002-07-04  0.098667

当前回答

如果你想使用相同的映射来重命名列和索引,你可以这样做:

mapping = {0:'Date', 1:'SM'}
df.index.names = list(map(lambda name: mapping.get(name, name), df.index.names))
df.rename(columns=mapping, inplace=True)

其他回答

你也可以使用Index。Set_names如下:

In [25]: x = pd.DataFrame({'year':[1,1,1,1,2,2,2,2],
   ....:                   'country':['A','A','B','B','A','A','B','B'],
   ....:                   'prod':[1,2,1,2,1,2,1,2],
   ....:                   'val':[10,20,15,25,20,30,25,35]})

In [26]: x = x.set_index(['year','country','prod']).squeeze()

In [27]: x
Out[27]: 
year  country  prod
1     A        1       10
               2       20
      B        1       15
               2       25
2     A        1       20
               2       30
      B        1       25
               2       35
Name: val, dtype: int64
In [28]: x.index = x.index.set_names('foo', level=1)

In [29]: x
Out[29]: 
year  foo  prod
1     A    1       10
           2       20
      B    1       15
           2       25
2     A    1       20
           2       30
      B    1       25
           2       35
Name: val, dtype: int64

单一指数:

 df.index.rename('new_name')

多重指数:

 df.index.rename(['new_name','new_name2'])

我们也可以在最新的熊猫中使用这个:

rename_axis

如果你想使用相同的映射来重命名列和索引,你可以这样做:

mapping = {0:'Date', 1:'SM'}
df.index.names = list(map(lambda name: mapping.get(name, name), df.index.names))
df.rename(columns=mapping, inplace=True)

对于更新的熊猫版本

df.index = df.index.rename('new name')

or

df.index.rename('new name', inplace=True)

如果数据帧应该保留其所有属性,则需要后者。

在Pandas 0.13及更高版本中,索引级别名称是不可变的(类型FrozenList),不能再直接设置。您必须首先使用index .rename()将新的索引级别名称应用到索引,然后使用DataFrame.reindex()将新索引应用到DataFrame。例子:

对于熊猫版本< 0.13

df.index.names = ['Date']

对于熊猫版本>= 0.13

df = df.reindex(df.index.rename(['Date']))