如何在Python中实现通用树?这有内置的数据结构吗?
当前回答
我使用嵌套字典实现了树。这很容易做到,而且对我来说,它在相当大的数据集上很有效。我在下面发布了一个示例,你可以在谷歌代码中看到更多
def addBallotToTree(self, tree, ballotIndex, ballot=""):
"""Add one ballot to the tree.
The root of the tree is a dictionary that has as keys the indicies of all
continuing and winning candidates. For each candidate, the value is also
a dictionary, and the keys of that dictionary include "n" and "bi".
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
If candidate c is a winning candidate, then that portion of the tree is
expanded to indicate the breakdown of the subsequently ranked candidates.
In this situation, additional keys are added to the tree[c] dictionary
corresponding to subsequently ranked candidates.
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
tree[c][d]["n"] is the number of ballots that rank c first and d second.
tree[c][d]["bi"] is a list of the corresponding ballot indices.
Where the second ranked candidates is also a winner, then the tree is
expanded to the next level.
Losing candidates are ignored and treated as if they do not appear on the
ballots. For example, tree[c][d]["n"] is the total number of ballots
where candidate c is the first non-losing candidate, c is a winner, and
d is the next non-losing candidate. This will include the following
ballots, where x represents a losing candidate:
[c d]
[x c d]
[c x d]
[x c x x d]
During the count, the tree is dynamically updated as candidates change
their status. The parameter "tree" to this method may be the root of the
tree or may be a sub-tree.
"""
if ballot == "":
# Add the complete ballot to the tree
weight, ballot = self.b.getWeightedBallot(ballotIndex)
else:
# When ballot is not "", we are adding a truncated ballot to the tree,
# because a higher-ranked candidate is a winner.
weight = self.b.getWeight(ballotIndex)
# Get the top choice among candidates still in the running
# Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
# we are looking for the top choice over a truncated ballot.
for c in ballot:
if c in self.continuing | self.winners:
break # c is the top choice so stop
else:
c = None # no candidates left on this ballot
if c is None:
# This will happen if the ballot contains only winning and losing
# candidates. The ballot index will not need to be transferred
# again so it can be thrown away.
return
# Create space if necessary.
if not tree.has_key(c):
tree[c] = {}
tree[c]["n"] = 0
tree[c]["bi"] = []
tree[c]["n"] += weight
if c in self.winners:
# Because candidate is a winner, a portion of the ballot goes to
# the next candidate. Pass on a truncated ballot so that the same
# candidate doesn't get counted twice.
i = ballot.index(c)
ballot2 = ballot[i+1:]
self.addBallotToTree(tree[c], ballotIndex, ballot2)
else:
# Candidate is in continuing so we stop here.
tree[c]["bi"].append(ballotIndex)
其他回答
我已经在我的网站https://web.archive.org/web/20120723175438/www.quesucede.com/page/show/id/python_3_tree_implementation上发布了一个Python 3树的实现
代码如下:
import uuid
def sanitize_id(id):
return id.strip().replace(" ", "")
(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)
class Node:
def __init__(self, name, identifier=None, expanded=True):
self.__identifier = (str(uuid.uuid1()) if identifier is None else
sanitize_id(str(identifier)))
self.name = name
self.expanded = expanded
self.__bpointer = None
self.__fpointer = []
@property
def identifier(self):
return self.__identifier
@property
def bpointer(self):
return self.__bpointer
@bpointer.setter
def bpointer(self, value):
if value is not None:
self.__bpointer = sanitize_id(value)
@property
def fpointer(self):
return self.__fpointer
def update_fpointer(self, identifier, mode=_ADD):
if mode is _ADD:
self.__fpointer.append(sanitize_id(identifier))
elif mode is _DELETE:
self.__fpointer.remove(sanitize_id(identifier))
elif mode is _INSERT:
self.__fpointer = [sanitize_id(identifier)]
class Tree:
def __init__(self):
self.nodes = []
def get_index(self, position):
for index, node in enumerate(self.nodes):
if node.identifier == position:
break
return index
def create_node(self, name, identifier=None, parent=None):
node = Node(name, identifier)
self.nodes.append(node)
self.__update_fpointer(parent, node.identifier, _ADD)
node.bpointer = parent
return node
def show(self, position, level=_ROOT):
queue = self[position].fpointer
if level == _ROOT:
print("{0} [{1}]".format(self[position].name,
self[position].identifier))
else:
print("\t"*level, "{0} [{1}]".format(self[position].name,
self[position].identifier))
if self[position].expanded:
level += 1
for element in queue:
self.show(element, level) # recursive call
def expand_tree(self, position, mode=_DEPTH):
# Python generator. Loosly based on an algorithm from 'Essential LISP' by
# John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
yield position
queue = self[position].fpointer
while queue:
yield queue[0]
expansion = self[queue[0]].fpointer
if mode is _DEPTH:
queue = expansion + queue[1:] # depth-first
elif mode is _WIDTH:
queue = queue[1:] + expansion # width-first
def is_branch(self, position):
return self[position].fpointer
def __update_fpointer(self, position, identifier, mode):
if position is None:
return
else:
self[position].update_fpointer(identifier, mode)
def __update_bpointer(self, position, identifier):
self[position].bpointer = identifier
def __getitem__(self, key):
return self.nodes[self.get_index(key)]
def __setitem__(self, key, item):
self.nodes[self.get_index(key)] = item
def __len__(self):
return len(self.nodes)
def __contains__(self, identifier):
return [node.identifier for node in self.nodes
if node.identifier is identifier]
if __name__ == "__main__":
tree = Tree()
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent = "harry")
tree.create_node("Bill", "bill", parent = "harry")
tree.create_node("Joe", "joe", parent = "jane")
tree.create_node("Diane", "diane", parent = "jane")
tree.create_node("George", "george", parent = "diane")
tree.create_node("Mary", "mary", parent = "diane")
tree.create_node("Jill", "jill", parent = "george")
tree.create_node("Carol", "carol", parent = "jill")
tree.create_node("Grace", "grace", parent = "bill")
tree.create_node("Mark", "mark", parent = "jane")
print("="*80)
tree.show("harry")
print("="*80)
for node in tree.expand_tree("harry", mode=_WIDTH):
print(node)
print("="*80)
class Tree(dict):
"""A tree implementation using python's autovivification feature."""
def __missing__(self, key):
value = self[key] = type(self)()
return value
#cast a (nested) dict to a (nested) Tree class
def __init__(self, data={}):
for k, data in data.items():
if isinstance(data, dict):
self[k] = type(self)(data)
else:
self[k] = data
作为一个字典,但提供尽可能多的嵌套字典。 试试下面的方法:
your_tree = Tree()
your_tree['a']['1']['x'] = '@'
your_tree['a']['1']['y'] = '#'
your_tree['a']['2']['x'] = '$'
your_tree['a']['3'] = '%'
your_tree['b'] = '*'
将传递一个嵌套的字典…就像树一样。
{'a': {'1': {'x': '@', 'y': '#'}, '2': {'x': '$'}, '3': '%'}, 'b': '*'}
... 如果你已经有字典了,它会把每一层都投射到一棵树上:
d = {'foo': {'amy': {'what': 'runs'} } }
tree = Tree(d)
print(d['foo']['amy']['what']) # returns 'runs'
d['foo']['amy']['when'] = 'now' # add new branch
这样,你就可以随心所欲地编辑/添加/删除每个词典级别。 遍历等所有dict方法仍然适用。
我将根树实现为字典{child:parent}。比如根节点为0,树可能是这样的:
tree={1:0, 2:0, 3:1, 4:2, 5:3}
这种结构使得沿着一条路径从任意节点向上到根结点非常容易,这与我正在处理的问题有关。
bigtree是一个Python树实现,集成了Python列表、字典和pandas DataFrame。它是python式的,易于学习,并可扩展到许多类型的工作流。
bigtree有很多组成部分,即
从列表、字典和熊猫数据框架构建树 遍历树 修改树(移位/复制节点) 搜索树 辅助方法(克隆树,修剪树,获取两个树之间的差异) 导出树(打印到控制台,导出树到字典,熊猫数据框架,图像等) 其他树结构:二叉树! 其他图结构:有向无环图(dag)!
我还能说什么呢……是的,这也是有据可查的。
一些例子:
from bigtree import list_to_tree, tree_to_dict, tree_to_dot
# Create tree from list, print tree
root = list_to_tree(["a/b/d", "a/c"])
print_tree(root)
# a
# ├── b
# │ └── d
# └── c
# Query tree
root.children
# (Node(/a/b, ), Node(/a/c, ))
# Export tree to dictionary / image
tree_to_dict(root)
# {
# '/a': {'name': 'a'},
# '/a/b': {'name': 'b'},
# '/a/b/d': {'name': 'd'},
# '/a/c': {'name': 'c'}
# }
graph = tree_to_dot(root, node_colour="gold")
graph.write_png("tree.png")
来源/免责声明:我是bigtree的创造者;)
另一个基于Bruno回答的树的实现:
class Node:
def __init__(self):
self.name: str = ''
self.children: List[Node] = []
self.parent: Node = self
def __getitem__(self, i: int) -> 'Node':
return self.children[i]
def add_child(self):
child = Node()
self.children.append(child)
child.parent = self
return child
def __str__(self) -> str:
def _get_character(x, left, right) -> str:
if x < left:
return '/'
elif x >= right:
return '\\'
else:
return '|'
if len(self.children):
children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
max_height: int = max(map(len, children_lines))
total_width: int = sum(widths) + len(widths) - 1
left: int = (total_width - len(self.name) + 1) // 2
right: int = left + len(self.name)
return '\n'.join((
self.name.center(total_width),
' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
widths, accumulate(widths, add))),
*map(
lambda row: ' '.join(map(
lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
children_lines)),
range(max_height))))
else:
return self.name
还有一个如何使用它的例子:
tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)
它应该输出:
Root node / / \ Child node 0 Child node 1 Child node 2 | / \ Grandchild 1.0 Grandchild 2.0 Grandchild 2.1
推荐文章
- Django:“projects”vs“apps”
- 如何列出导入的模块?
- 转换Python程序到C/ c++代码?
- 如何从gmtime()的时间+日期输出中获得自epoch以来的秒数?
- 在python模块文档字符串中放入什么?
- 我如何在Django中过滤一个DateTimeField的日期?
- 数组与链表
- 在Python中用索引迭代列表
- -e,——editable选项在pip install中什么时候有用?
- 使用pip命令从requirements.txt升级python包
- Django更改默认的runserver端口
- 输入对象的datetime。Datetime没有Datetime属性
- numpy数组的Python内存使用情况
- NumPy或Pandas:保持数组类型为整数,同时具有NaN值
- 列表理解条件中的' elif '