如何在Python中实现通用树?这有内置的数据结构吗?
当前回答
你可以试试:
from collections import defaultdict
def tree(): return defaultdict(tree)
users = tree()
users['harold']['username'] = 'hrldcpr'
users['handler']['username'] = 'matthandlersux'
建议在这里:https://gist.github.com/2012250
其他回答
Greg Hewgill的回答很好,但如果你每层需要更多的节点,你可以使用列表|字典来创建它们:然后使用方法按名称或顺序(如id)访问它们。
class node(object):
def __init__(self):
self.name=None
self.node=[]
self.otherInfo = None
self.prev=None
def nex(self,child):
"Gets a node by number"
return self.node[child]
def prev(self):
return self.prev
def goto(self,data):
"Gets the node by name"
for child in range(0,len(self.node)):
if(self.node[child].name==data):
return self.node[child]
def add(self):
node1=node()
self.node.append(node1)
node1.prev=self
return node1
现在只需创建一个根并建立它: 例:
tree=node() #create a node
tree.name="root" #name it root
tree.otherInfo="blue" #or what ever
tree=tree.add() #add a node to the root
tree.name="node1" #name it
root
/
child1
tree=tree.add()
tree.name="grandchild1"
root
/
child1
/
grandchild1
tree=tree.prev()
tree=tree.add()
tree.name="gchild2"
root
/
child1
/ \
grandchild1 gchild2
tree=tree.prev()
tree=tree.prev()
tree=tree.add()
tree=tree.name="child2"
root
/ \
child1 child2
/ \
grandchild1 gchild2
tree=tree.prev()
tree=tree.goto("child1") or tree=tree.nex(0)
tree.name="changed"
root
/ \
changed child2
/ \
grandchild1 gchild2
这应该足够让你开始思考如何让它工作了
如果您想要创建树数据结构,那么首先必须创建treeElement对象。如果您创建了treeElement对象,那么您可以决定树的行为。
下面是TreeElement类:
class TreeElement (object):
def __init__(self):
self.elementName = None
self.element = []
self.previous = None
self.elementScore = None
self.elementParent = None
self.elementPath = []
self.treeLevel = 0
def goto(self, data):
for child in range(0, len(self.element)):
if (self.element[child].elementName == data):
return self.element[child]
def add(self):
single_element = TreeElement()
single_element.elementName = self.elementName
single_element.previous = self.elementParent
single_element.elementScore = self.elementScore
single_element.elementPath = self.elementPath
single_element.treeLevel = self.treeLevel
self.element.append(single_element)
return single_element
现在,我们必须使用这个元素来创建树,在这个例子中我使用的是A*树。
class AStarAgent(Agent):
# Initialization Function: Called one time when the game starts
def registerInitialState(self, state):
return;
# GetAction Function: Called with every frame
def getAction(self, state):
# Sorting function for the queue
def sortByHeuristic(each_element):
if each_element.elementScore:
individual_score = each_element.elementScore[0][0] + each_element.treeLevel
else:
individual_score = admissibleHeuristic(each_element)
return individual_score
# check the game is over or not
if state.isWin():
print('Job is done')
return Directions.STOP
elif state.isLose():
print('you lost')
return Directions.STOP
# Create empty list for the next states
astar_queue = []
astar_leaf_queue = []
astar_tree_level = 0
parent_tree_level = 0
# Create Tree from the give node element
astar_tree = TreeElement()
astar_tree.elementName = state
astar_tree.treeLevel = astar_tree_level
astar_tree = astar_tree.add()
# Add first element into the queue
astar_queue.append(astar_tree)
# Traverse all the elements of the queue
while astar_queue:
# Sort the element from the queue
if len(astar_queue) > 1:
astar_queue.sort(key=lambda x: sortByHeuristic(x))
# Get the first node from the queue
astar_child_object = astar_queue.pop(0)
astar_child_state = astar_child_object.elementName
# get all legal actions for the current node
current_actions = astar_child_state.getLegalPacmanActions()
if current_actions:
# get all the successor state for these actions
for action in current_actions:
# Get the successor of the current node
next_state = astar_child_state.generatePacmanSuccessor(action)
if next_state:
# evaluate the successor states using scoreEvaluation heuristic
element_scored = [(admissibleHeuristic(next_state), action)]
# Increase the level for the child
parent_tree_level = astar_tree.goto(astar_child_state)
if parent_tree_level:
astar_tree_level = parent_tree_level.treeLevel + 1
else:
astar_tree_level += 1
# create tree for the finding the data
astar_tree.elementName = next_state
astar_tree.elementParent = astar_child_state
astar_tree.elementScore = element_scored
astar_tree.elementPath.append(astar_child_state)
astar_tree.treeLevel = astar_tree_level
astar_object = astar_tree.add()
# If the state exists then add that to the queue
astar_queue.append(astar_object)
else:
# Update the value leaf into the queue
astar_leaf_state = astar_tree.goto(astar_child_state)
astar_leaf_queue.append(astar_leaf_state)
你可以从对象中添加/删除任何元素,但要使结构为完整的。
您可以使用Python中的dataclasses模块创建Tree数据结构。
iter方法可用于使树可迭代,允许您通过改变yield语句的顺序来遍历树。
contains方法可用于检查树中是否存在特定值。
from dataclasses import dataclass
# A
# / \
# B C
# / \ \
# D E F
# / \
# G H
@dataclass
class Node:
data: str
left: Node = None
right: Node = None
def __iter__(self):
if self.left:
yield from self.left
yield self
if self.right:
yield from self.right
def __contains__(self, other):
for node in self:
if node.data == other:
return True
return False
t = Node(
'A',
Node(
'B',
Node(
'D',
Node('G'),
Node('H'),
),
Node('E'),
),
Node(
'C',
right=Node('F'),
),
)
assert ('A' in t) is True
assert ('I' in t) is not True
for node in t:
print(node.data, ' -> ', end='')
# G -> D -> H -> B -> E -> A -> C -> F ->
我已经在我的网站https://web.archive.org/web/20120723175438/www.quesucede.com/page/show/id/python_3_tree_implementation上发布了一个Python 3树的实现
代码如下:
import uuid
def sanitize_id(id):
return id.strip().replace(" ", "")
(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)
class Node:
def __init__(self, name, identifier=None, expanded=True):
self.__identifier = (str(uuid.uuid1()) if identifier is None else
sanitize_id(str(identifier)))
self.name = name
self.expanded = expanded
self.__bpointer = None
self.__fpointer = []
@property
def identifier(self):
return self.__identifier
@property
def bpointer(self):
return self.__bpointer
@bpointer.setter
def bpointer(self, value):
if value is not None:
self.__bpointer = sanitize_id(value)
@property
def fpointer(self):
return self.__fpointer
def update_fpointer(self, identifier, mode=_ADD):
if mode is _ADD:
self.__fpointer.append(sanitize_id(identifier))
elif mode is _DELETE:
self.__fpointer.remove(sanitize_id(identifier))
elif mode is _INSERT:
self.__fpointer = [sanitize_id(identifier)]
class Tree:
def __init__(self):
self.nodes = []
def get_index(self, position):
for index, node in enumerate(self.nodes):
if node.identifier == position:
break
return index
def create_node(self, name, identifier=None, parent=None):
node = Node(name, identifier)
self.nodes.append(node)
self.__update_fpointer(parent, node.identifier, _ADD)
node.bpointer = parent
return node
def show(self, position, level=_ROOT):
queue = self[position].fpointer
if level == _ROOT:
print("{0} [{1}]".format(self[position].name,
self[position].identifier))
else:
print("\t"*level, "{0} [{1}]".format(self[position].name,
self[position].identifier))
if self[position].expanded:
level += 1
for element in queue:
self.show(element, level) # recursive call
def expand_tree(self, position, mode=_DEPTH):
# Python generator. Loosly based on an algorithm from 'Essential LISP' by
# John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
yield position
queue = self[position].fpointer
while queue:
yield queue[0]
expansion = self[queue[0]].fpointer
if mode is _DEPTH:
queue = expansion + queue[1:] # depth-first
elif mode is _WIDTH:
queue = queue[1:] + expansion # width-first
def is_branch(self, position):
return self[position].fpointer
def __update_fpointer(self, position, identifier, mode):
if position is None:
return
else:
self[position].update_fpointer(identifier, mode)
def __update_bpointer(self, position, identifier):
self[position].bpointer = identifier
def __getitem__(self, key):
return self.nodes[self.get_index(key)]
def __setitem__(self, key, item):
self.nodes[self.get_index(key)] = item
def __len__(self):
return len(self.nodes)
def __contains__(self, identifier):
return [node.identifier for node in self.nodes
if node.identifier is identifier]
if __name__ == "__main__":
tree = Tree()
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent = "harry")
tree.create_node("Bill", "bill", parent = "harry")
tree.create_node("Joe", "joe", parent = "jane")
tree.create_node("Diane", "diane", parent = "jane")
tree.create_node("George", "george", parent = "diane")
tree.create_node("Mary", "mary", parent = "diane")
tree.create_node("Jill", "jill", parent = "george")
tree.create_node("Carol", "carol", parent = "jill")
tree.create_node("Grace", "grace", parent = "bill")
tree.create_node("Mark", "mark", parent = "jane")
print("="*80)
tree.show("harry")
print("="*80)
for node in tree.expand_tree("harry", mode=_WIDTH):
print(node)
print("="*80)
我推荐任何树(我是作者)。
例子:
from anytree import Node, RenderTree
udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)
print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')
for pre, fill, node in RenderTree(udo):
print("%s%s" % (pre, node.name))
Udo
├── Marc
│ └── Lian
└── Dan
├── Jet
├── Jan
└── Joe
print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))
anytree也有一个强大的API:
简单的树创建 简单树修改 预序树迭代 后序树迭代 解析相对节点路径和绝对节点路径 从一个节点移动到另一个节点。 树渲染(参见上面的例子) 节点连接/分离连接
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 为什么java.util.Set没有get(int index)?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录