可生成式和可生成式的区别是什么 有识别力的算法?
当前回答
我的观点是: 歧视性的方法突出了差异 生成方法不关注差异;他们试图建立一个能代表班级的模型。 两者之间有重叠之处。 理想情况下,两种方法都应该使用:一种有助于发现相似之处,另一种有助于发现不同之处。
其他回答
不同的模型归纳如下表:
图片来源:监督学习小抄-斯坦福CS 229(机器学习)
想象一下,你的任务是将演讲分类为一种语言。
你可以通过以下任何一种方式:
学习每一种语言,然后用你刚刚学到的知识对它进行分类
or
在不学习语言的情况下确定语言模型的差异,然后对语音进行分类。
第一种是生成方法,第二种是判别方法。
查看参考资料了解更多细节:http://www.cedar.buffalo.edu/~srihari/CSE574/Discriminative-Generative.pdf。
这是一个额外的信息点,与上面StompChicken的回答相吻合。
判别模型和生成模型的根本区别在于:
判别模型学习类之间的(硬的或软的)边界 生成模型为单个类的分布建模
编辑:
生成式模型是可以生成数据的模型。它同时对特征和类(即完整的数据)建模。
如果我们对P(x,y)建模:我可以使用这个概率分布来生成数据点——因此所有建模P(x,y)的算法都是生成的。
如。生成模型
朴素贝叶斯模型P(c)和P(d|c) -其中c是类,d是特征向量。 P(c,d) = P(c) * P(d|c) 因此,某些形式的朴素贝叶斯模型,P(c,d) 贝叶斯网 马尔可夫网
判别模型是指只能用于对数据点进行判别/分类的模型。 你只需要在这种情况下建模P(y|x),(即给定特征向量的类别概率)。
如。关于判别模型:
逻辑回归 神经网络 条件随机场
一般来说,生成式模型比判别式模型需要更多的建模,因此有时不那么有效。事实上,大多数(不确定是否全部)无监督学习算法,如聚类等,可以被称为生成式,因为它们建模P(d)(并且没有类:P)
附言:部分答案来源于原文
一般来说,机器学习社区有一个惯例,那就是不要学你不想学的东西。例如,考虑一个分类问题,目标是为给定的x输入分配y个标签。如果我们使用生成模型
p(x,y)=p(y|x).p(x)
我们必须为p(x)建模,而p(x)与当前任务无关。像数据稀疏性这样的实际限制将迫使我们用一些弱独立性假设来建模p(x)。因此,我们直观地使用判别模型进行分类。
生成算法模型将完全从训练数据中学习,并预测响应。
判别算法的工作就是对两种结果进行分类或区分。
推荐文章
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 如何在Python中进行热编码?
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- 如何将数据分成3组(训练、验证和测试)?