我试图突出显示两个数据帧之间发生了什么变化。

假设我有两个Python Pandas数据框架:

"StudentRoster Jan-1":
id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.11                     False                Graduated
113  Zoe    4.12                     True       

"StudentRoster Jan-2":
id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.21                     False                Graduated
113  Zoe    4.12                     False                On vacation

我的目标是输出一个HTML表,它:

标识已更改的行(可以是int, float, boolean,字符串) 输出具有相同的OLD和NEW值的行(理想情况下是HTML表),以便消费者可以清楚地看到两个数据框架之间发生了什么变化: “StudentRoster差异Jan-1 - Jan-2”: id名称分数isregistered评论 尼克是1.11|现在1.21假毕业 113佐伊4.12是真的|现在是假的|现在“度假”

我想我可以逐行逐列比较,但有没有更简单的方法?


当前回答

第一部分类似于Constantine,你可以得到哪个行是空的布尔值*:

In [21]: ne = (df1 != df2).any(1)

In [22]: ne
Out[22]:
0    False
1     True
2     True
dtype: bool

然后我们可以看到哪些条目发生了变化:

In [23]: ne_stacked = (df1 != df2).stack()

In [24]: changed = ne_stacked[ne_stacked]

In [25]: changed.index.names = ['id', 'col']

In [26]: changed
Out[26]:
id  col
1   score         True
2   isEnrolled    True
    Comment       True
dtype: bool

这里的第一个条目是索引,第二个条目是已更改的列。

In [27]: difference_locations = np.where(df1 != df2)

In [28]: changed_from = df1.values[difference_locations]

In [29]: changed_to = df2.values[difference_locations]

In [30]: pd.DataFrame({'from': changed_from, 'to': changed_to}, index=changed.index)
Out[30]:
               from           to
id col
1  score       1.11         1.21
2  isEnrolled  True        False
   Comment     None  On vacation

*注意:重要的是df1和df2在这里共享相同的索引。为了克服这种模糊性,可以使用df1确保只查看共享标签。Index & df2。索引,但我还是把它留作练习吧。

其他回答

pandas >= 1.1: DataFrame.compare

使用pandas 1.1,基本上可以用一个函数调用复制Ted Petrou的输出。例子摘自文档:

pd.__version__
# '1.1.0'

df1.compare(df2)

  score       isEnrolled       Comment             
   self other       self other    self        other
1  1.11  1.21        NaN   NaN     NaN          NaN
2   NaN   NaN        1.0   0.0     NaN  On vacation

这里,“self”指的是LHS数据帧,而“other”指的是RHS数据帧。默认情况下,相等的值将被nan替换,因此您可以只关注差异。如果您想显示相同的值,请使用

df1.compare(df2, keep_equal=True, keep_shape=True) 

  score       isEnrolled           Comment             
   self other       self  other       self        other
1  1.11  1.21      False  False  Graduated    Graduated
2  4.12  4.12       True  False        NaN  On vacation

你也可以使用align_axis改变比较轴:

df1.compare(df2, align_axis='index')

         score  isEnrolled      Comment
1 self    1.11         NaN          NaN
  other   1.21         NaN          NaN
2 self     NaN         1.0          NaN
  other    NaN         0.0  On vacation

这是逐行比较值,而不是逐列比较值。

如果两个数据帧中有相同的id,那么找出发生了什么变化实际上是相当容易的。只要执行frame1 != frame2,就会得到一个布尔型的DataFrame,其中每个True都是已更改的数据。由此,您可以通过执行changedids = frame1.index[np。Any (frame1 != frame2,axis=1)]。

扩展@cge的答案,这对于结果的可读性来说非常酷:

a[a != b][np.any(a != b, axis=1)].join(pd.DataFrame('a<->b', index=a.index, columns=['a<=>b'])).join(
        b[a != b][np.any(a != b, axis=1)]
        ,rsuffix='_b', how='outer'
).fillna('')

完整的演示示例:

import numpy as np, pandas as pd

a = pd.DataFrame(np.random.randn(7,3), columns=list('ABC'))
b = a.copy()
b.iloc[0,2] = np.nan
b.iloc[1,0] = 7
b.iloc[3,1] = 77
b.iloc[4,2] = 777

a[a != b][np.any(a != b, axis=1)].join(pd.DataFrame('a<->b', index=a.index, columns=['a<=>b'])).join(
        b[a != b][np.any(a != b, axis=1)]
        ,rsuffix='_b', how='outer'
).fillna('')

结果:样本

在线演示

突出显示两个数据框架之间的差异

可以使用DataFrame样式属性来突出显示有差异的单元格的背景颜色。

使用原始问题中的示例数据

第一步是用concat函数水平连接dataframe,并用keys参数区分每一帧:

df_all = pd.concat([df.set_index('id'), df2.set_index('id')], 
                   axis='columns', keys=['First', 'Second'])
df_all

交换列级别并将相同的列名放在彼此旁边可能更容易:

df_final = df_all.swaplevel(axis='columns')[df.columns[1:]]
df_final

现在,很容易看出不同的框架。但是,我们可以进一步使用style属性来突出显示不同的单元格。我们定义了一个自定义函数来实现这一点,您可以在本部分文档中看到。

def highlight_diff(data, color='yellow'):
    attr = 'background-color: {}'.format(color)
    other = data.xs('First', axis='columns', level=-1)
    return pd.DataFrame(np.where(data.ne(other, level=0), attr, ''),
                        index=data.index, columns=data.columns)

df_final.style.apply(highlight_diff, axis=None)

这将突出显示两者都有缺失值的单元格。您可以填充它们或提供额外的逻辑,这样它们就不会被突出显示。

第一部分类似于Constantine,你可以得到哪个行是空的布尔值*:

In [21]: ne = (df1 != df2).any(1)

In [22]: ne
Out[22]:
0    False
1     True
2     True
dtype: bool

然后我们可以看到哪些条目发生了变化:

In [23]: ne_stacked = (df1 != df2).stack()

In [24]: changed = ne_stacked[ne_stacked]

In [25]: changed.index.names = ['id', 'col']

In [26]: changed
Out[26]:
id  col
1   score         True
2   isEnrolled    True
    Comment       True
dtype: bool

这里的第一个条目是索引,第二个条目是已更改的列。

In [27]: difference_locations = np.where(df1 != df2)

In [28]: changed_from = df1.values[difference_locations]

In [29]: changed_to = df2.values[difference_locations]

In [30]: pd.DataFrame({'from': changed_from, 'to': changed_to}, index=changed.index)
Out[30]:
               from           to
id col
1  score       1.11         1.21
2  isEnrolled  True        False
   Comment     None  On vacation

*注意:重要的是df1和df2在这里共享相同的索引。为了克服这种模糊性,可以使用df1确保只查看共享标签。Index & df2。索引,但我还是把它留作练习吧。