如何在Python中检查字符串是否表示数值?

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

上述方法可行,但似乎很笨拙。


如果您正在测试的内容来自用户输入,那么即使它表示int或float,它仍然是一个字符串。请参阅如何将输入读取为数字?用于转换输入,并询问用户输入,直到他们给出有效响应以确保输入在继续之前表示int或float(或其他要求)。


当前回答

对于非数字字符串,请尝试:except:实际上比正则表达式慢。对于有效数字的字符串,正则表达式速度较慢。因此,适当的方法取决于您的输入。

如果您发现自己处于性能绑定中,可以使用名为fastnumbers的新第三方模块,该模块提供一个名为isfloat的函数。完全披露,我是作者。我已将其结果包含在以下时间中。


from __future__ import print_function
import timeit

prep_base = '''\
x = 'invalid'
y = '5402'
z = '4.754e3'
'''

prep_try_method = '''\
def is_number_try(val):
    try:
        float(val)
        return True
    except ValueError:
        return False

'''

prep_re_method = '''\
import re
float_match = re.compile(r'[-+]?\d*\.?\d+(?:[eE][-+]?\d+)?$').match
def is_number_re(val):
    return bool(float_match(val))

'''

fn_method = '''\
from fastnumbers import isfloat

'''

print('Try with non-number strings', timeit.timeit('is_number_try(x)',
    prep_base + prep_try_method), 'seconds')
print('Try with integer strings', timeit.timeit('is_number_try(y)',
    prep_base + prep_try_method), 'seconds')
print('Try with float strings', timeit.timeit('is_number_try(z)',
    prep_base + prep_try_method), 'seconds')
print()
print('Regex with non-number strings', timeit.timeit('is_number_re(x)',
    prep_base + prep_re_method), 'seconds')
print('Regex with integer strings', timeit.timeit('is_number_re(y)',
    prep_base + prep_re_method), 'seconds')
print('Regex with float strings', timeit.timeit('is_number_re(z)',
    prep_base + prep_re_method), 'seconds')
print()
print('fastnumbers with non-number strings', timeit.timeit('isfloat(x)',
    prep_base + 'from fastnumbers import isfloat'), 'seconds')
print('fastnumbers with integer strings', timeit.timeit('isfloat(y)',
    prep_base + 'from fastnumbers import isfloat'), 'seconds')
print('fastnumbers with float strings', timeit.timeit('isfloat(z)',
    prep_base + 'from fastnumbers import isfloat'), 'seconds')
print()

Try with non-number strings 2.39108395576 seconds
Try with integer strings 0.375686168671 seconds
Try with float strings 0.369210958481 seconds

Regex with non-number strings 0.748660802841 seconds
Regex with integer strings 1.02021503448 seconds
Regex with float strings 1.08564686775 seconds

fastnumbers with non-number strings 0.174362897873 seconds
fastnumbers with integer strings 0.179651021957 seconds
fastnumbers with float strings 0.20222902298 seconds

如你所见

try:except:对于数字输入很快,但对于无效输入很慢当输入无效时,正则表达式非常有效fastnumbers在这两种情况下都获胜

其他回答

通过返回比True和False更有用的值,可以以有用的方式概括异常技术。例如,此函数将引号放在字符串周围,但不使用数字。这正是我需要的快速而肮脏的过滤器来为R定义一些变量。

import sys

def fix_quotes(s):
    try:
        float(s)
        return s
    except ValueError:
        return '"{0}"'.format(s)

for line in sys.stdin:
    input = line.split()
    print input[0], '<- c(', ','.join(fix_quotes(c) for c in input[1:]), ')'

强制转换为float并捕获ValueError可能是最快的方法,因为float()专门用于此。任何其他需要字符串解析(正则表达式等)的操作都可能会比较慢,因为它没有针对该操作进行调整。我的0.02美元。

用户助手功能:

def if_ok(fn, string):
  try:
    return fn(string)
  except Exception as e:
    return None

然后

if_ok(int, my_str) or if_ok(float, my_str) or if_ok(complex, my_str)
is_number = lambda s: any([if_ok(fn, s) for fn in (int, float, complex)])

这不仅丑陋而且缓慢

我对这两个都有异议。

正则表达式或其他字符串解析方法会更丑陋、更慢。

我不确定有什么比上面提到的更快。它调用函数并返回。Try/Catch不会带来太多的开销,因为最常见的异常是在不大量搜索堆栈帧的情况下捕获的。

问题是任何数值转换函数都有两种结果

一个数字,如果该数字有效状态代码(例如,通过errno)或异常,表明无法解析任何有效数字。

C(作为一个例子)通过多种方式解决了这个问题。Python将其清晰明确地展示出来。

我认为你这样做的代码是完美的。

我做了一些速度测试。让我们假设,如果字符串可能是一个数字,则try/except策略是最快的。如果字符串不可能是数字,并且您对整数检查感兴趣,则值得进行一些测试(isdigit加上标题“-”)。如果您有兴趣检查浮点数,则必须使用try/except代码而不进行转义。