是否有一种方法可以方便地在Python中定义类c结构?我厌倦了写这样的东西:
class MyStruct():
def __init__(self, field1, field2, field3):
self.field1 = field1
self.field2 = field2
self.field3 = field3
是否有一种方法可以方便地在Python中定义类c结构?我厌倦了写这样的东西:
class MyStruct():
def __init__(self, field1, field2, field3):
self.field1 = field1
self.field2 = field2
self.field3 = field3
当前回答
我发现做到这一点的最好方法是使用自定义字典类,如本文所述:https://stackoverflow.com/a/14620633/8484485
如果需要iPython自动补全支持,只需像这样定义dir()函数:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def __dir__(self):
return self.keys()
然后像这样定义你的伪结构(这个是嵌套的)
my_struct=AttrDict ({
'com1':AttrDict ({
'inst':[0x05],
'numbytes':2,
'canpayload':False,
'payload':None
})
})
然后你可以像这样访问my_struct中的值:
打印(my_struct.com1.inst)
= > [5]
其他回答
这里有一个解决方案,它使用一个类(从未实例化)来保存数据。我喜欢这种方式涉及很少的输入,不需要任何额外的软件包等。
class myStruct:
field1 = "one"
field2 = "2"
您可以稍后根据需要添加更多字段:
myStruct.field3 = 3
要获取值,可以像往常一样访问字段:
>>> myStruct.field1
'one'
我发现做到这一点的最好方法是使用自定义字典类,如本文所述:https://stackoverflow.com/a/14620633/8484485
如果需要iPython自动补全支持,只需像这样定义dir()函数:
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def __dir__(self):
return self.keys()
然后像这样定义你的伪结构(这个是嵌套的)
my_struct=AttrDict ({
'com1':AttrDict ({
'inst':[0x05],
'numbytes':2,
'canpayload':False,
'payload':None
})
})
然后你可以像这样访问my_struct中的值:
打印(my_struct.com1.inst)
= > [5]
https://stackoverflow.com/a/32448434/159695在Python3中不起作用。
https://stackoverflow.com/a/35993/159695在Python3中工作。
然后我扩展它来添加默认值。
class myStruct:
def __init__(self, **kwds):
self.x=0
self.__dict__.update(kwds) # Must be last to accept assigned member variable.
def __repr__(self):
args = ['%s=%s' % (k, repr(v)) for (k,v) in vars(self).items()]
return '%s(%s)' % ( self.__class__.__qualname__, ', '.join(args) )
a=myStruct()
b=myStruct(x=3,y='test')
c=myStruct(x='str')
>>> a
myStruct(x=0)
>>> b
myStruct(x=3, y='test')
>>> c
myStruct(x='str')
这里有一个快速而肮脏的技巧:
>>> ms = Warning()
>>> ms.foo = 123
>>> ms.bar = 'akafrit'
它是如何工作的?它只是重用内置类警告(从异常派生),并使用它,因为它是你自己定义的类。
优点是您不需要首先导入或定义任何东西,“警告”是一个简短的名称,并且它还清楚地表明您正在做一些肮脏的事情,不应该在其他地方使用,而应该在您的小脚本中使用。
顺便说一下,我试图找到一些更简单的东西,如ms = object(),但不能(最后一个例子是不工作)。如果你有的话,我很感兴趣。
NamedTuple很舒服。但是没有人共享性能和存储。
from typing import NamedTuple
import guppy # pip install guppy
import timeit
class User:
def __init__(self, name: str, uid: int):
self.name = name
self.uid = uid
class UserSlot:
__slots__ = ('name', 'uid')
def __init__(self, name: str, uid: int):
self.name = name
self.uid = uid
class UserTuple(NamedTuple):
# __slots__ = () # AttributeError: Cannot overwrite NamedTuple attribute __slots__
name: str
uid: int
def get_fn(obj, attr_name: str):
def get():
getattr(obj, attr_name)
return get
if 'memory test':
obj = [User('Carson', 1) for _ in range(1000000)] # Cumulative: 189138883
obj_slot = [UserSlot('Carson', 1) for _ in range(1000000)] # 77718299 <-- winner
obj_namedtuple = [UserTuple('Carson', 1) for _ in range(1000000)] # 85718297
print(guppy.hpy().heap()) # Run this function individually.
"""
Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000000 24 112000000 34 112000000 34 dict of __main__.User
1 1000000 24 64000000 19 176000000 53 __main__.UserTuple
2 1000000 24 56000000 17 232000000 70 __main__.User
3 1000000 24 56000000 17 288000000 87 __main__.UserSlot
...
"""
if 'performance test':
obj = User('Carson', 1)
obj_slot = UserSlot('Carson', 1)
obj_tuple = UserTuple('Carson', 1)
time_normal = min(timeit.repeat(get_fn(obj, 'name'), repeat=20))
print(time_normal) # 0.12550550000000005
time_slot = min(timeit.repeat(get_fn(obj_slot, 'name'), repeat=20))
print(time_slot) # 0.1368690000000008
time_tuple = min(timeit.repeat(get_fn(obj_tuple, 'name'), repeat=20))
print(time_tuple) # 0.16006120000000124
print(time_tuple/time_slot) # 1.1694481584580898 # The slot is almost 17% faster than NamedTuple on Windows. (Python 3.7.7)
如果你的__dict__没有被使用,请在__slots__(更高的性能和存储)和NamedTuple(清晰的阅读和使用)之间选择。
您可以查看此链接(插槽的使用 )来获取更多的__slots__信息。