A recent talk about unordered_map in C++ made me realize that I should use unordered_map for most cases where I used map before, because of the efficiency of lookup ( amortized O(1) vs. O(log n) ). Most times I use a map, I use either int or std::string as the key type; hence, I've got no problems with the definition of the hash function. The more I thought about it, the more I came to realize that I can't find any reason of using a std::map over a std::unordered_map in the case of keys with simple types -- I took a look at the interfaces, and didn't find any significant differences that would impact my code.

因此,问题是:是否有任何真正的理由使用std::map而不是std::unordered_map在简单类型的情况下,如int和std::string?

我是从严格的编程角度提出这个问题的——我知道它并不是完全标准的,而且它可能会给移植带来问题。

另外,我认为正确答案之一可能是“对于较小的数据集更有效”,因为开销更小(是真的吗?)——因此,我希望将这个问题限制在键数量非普通的情况下(>1 024)。

编辑:哦,我忘记了显而易见的(感谢GMan!)——是的,地图当然是有序的——我知道,我正在寻找其他原因。


当前回答

通过使用std::unordered_map,您可以声明在代码中任何地方都不依赖于被排序的映射。在某些情况下,这些附加的上下文信息可能有助于理解这个映射在程序中是如何实际使用的。随着性能作为一个副作用的到来,清晰度可能更加重要。

当然,当您需要使用有序映射时,没有编译器会阻止您使用无序映射,但这不大可能工作得很好,因此读者可能会认为这不是一个错误。

其他回答

我最近做了一个测试,做了50000个归并排序。这意味着如果字符串键是相同的,合并字节字符串。最终的输出应该是排序的。这包括查找每一个插入。

对于地图实现,完成这项工作需要200毫秒。对于unordered_map + map,插入unordered_map需要70 ms,插入map需要80 ms。所以混合实现快了50毫秒。

我们在使用地图之前应该三思。如果您只需要在程序的最终结果中对数据进行排序,那么混合解决方案可能会更好。

不要忘记map保持其元素的顺序。如果你不能放弃它,显然你不能使用unordered_map。

另外需要记住的一点是,unordered_map通常会使用更多的内存。Map只有一些内部指针和每个对象的内存。相反,unordered_map有一个大数组(在某些实现中会变得相当大),然后为每个对象提供额外的内存。如果需要内存感知,map应该会更好,因为它缺少大数组。

所以,如果你需要纯粹的查找-检索,我认为unordered_map是最好的方法。但总会有权衡,如果你负担不起,那你就不能使用它。

仅凭个人经验,我发现在主实体查找表中使用unordered_map而不是map时,性能有了巨大的改进(当然是度量的)。

另一方面,我发现它在重复插入和删除元素时要慢得多。它非常适合相对静态的元素集合,但如果您正在进行大量的插入和删除,那么哈希+桶似乎就会累加起来。(注意,这需要经过多次迭代。)

通过使用std::unordered_map,您可以声明在代码中任何地方都不依赖于被排序的映射。在某些情况下,这些附加的上下文信息可能有助于理解这个映射在程序中是如何实际使用的。随着性能作为一个副作用的到来,清晰度可能更加重要。

当然,当您需要使用有序映射时,没有编译器会阻止您使用无序映射,但这不大可能工作得很好,因此读者可能会认为这不是一个错误。

我认为这个问题已经部分回答了,因为没有提供关于以“int”类型作为键的性能的信息。我做了我自己的分析,我发现std::map在许多实际情况下使用整数作为键时可以胜过std::unordered_map(在速度上)。

整数测试

测试场景包括使用顺序键和随机键填充映射,以及长度为17的倍数[17:119]的字符串值。执行测试时,元素计数范围为[10:10000000],以10为幂。

Labels:

Map64: std::map<uint64_t,std::string>
Map32: std::map<uint32_t,std::string>
uMap64: std::unordered_map<uint64_t,std::string>
uMap32: std::unordered_map<uint32_t,std::string>

插入

Labels:

Sequencial Key Insert: maps were constructed with keys in the range [0-ElementCount]
Random Key Insert: maps were constructed with random keys in the full range of the type

关于插入的结论:

当映射大小小于10000个元素时,在std::map中插入展开键往往优于std::unordered_map。 在std::map中插入密集键在1000个元素下与std::unordered_map没有性能差异。 在所有其他情况下,std::unordered_map往往执行得更快。

查找

Labels:

Sequential Key - Seq. Search: Search is performed in the dense map (keys are sequential). All searched keys exists in the map.
Random Key - Rand. Search: Search is performed in the sparse map (keys are random). All searched keys exists in the map.

(label names can be miss leading, sorry about that)

关于查阅的结论:

当地图大小小于1000000个元素时,在std::map上的搜索往往略优于std::unordered_map。 密集std::map的搜索性能优于std::unordered_map

查询失败

Labels:

Sequential Key - Rand. Search: Search is performed in the dense map. Most keys do not exists in the map.
Random Key - Seq. Search: Search is performed in the sparse map. Most keys do not exists in the map.

(label names can be miss leading, sorry about that)

关于查找失败的结论:

在std::map中搜索缺失是一个很大的影响。

一般的结论

即使在需要速度时,std::map用于整数键在许多情况下仍然是更好的选择。举个实际的例子,我有一本字典 在这里查找从未失败,尽管键具有稀疏分布,但它将在与std::unordered_map相同的速度下执行得更差,因为我的元素计数低于1K。内存占用显著降低。

字符串的测试

为了供参考,我在这里给出了字符串[string]映射的计时。键字符串是由一个随机的uint64_t值形成的,值字符串是在其他测试中使用的相同。

Labels:

MapString: std::map<std::string,std::string>
uMapString: std::unordered_map<std::string,std::string>

评价平台

操作系统:Linux - OpenSuse风滚草

编译器:g++ (SUSE Linux) 11.2.1 20210816

CPU: Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz

内存:64 gb

I was intrigued by the answer from @Jerry Coffin, which suggested that the ordered map would exhibit performance increases on long strings, after some experimentation (which can be downloaded from pastebin), I've found that this seems to hold true only for collections of random strings, when the map is initialised with a sorted dictionary (which contain words with considerable amounts of prefix-overlap), this rule breaks down, presumably because of the increased tree depth necessary to retrieve value. The results are shown below, the 1st number column is insert time, 2nd is fetch time.

g++ -g -O3 --std=c++0x   -c -o stdtests.o stdtests.cpp
g++ -o stdtests stdtests.o
gmurphy@interloper:HashTests$ ./stdtests
# 1st number column is insert time, 2nd is fetch time
 ** Integer Keys ** 
 unordered:      137      15
   ordered:      168      81
 ** Random String Keys ** 
 unordered:       55      50
   ordered:       33      31
 ** Real Words Keys ** 
 unordered:      278      76
   ordered:      516     298