A recent talk about unordered_map in C++ made me realize that I should use unordered_map for most cases where I used map before, because of the efficiency of lookup ( amortized O(1) vs. O(log n) ). Most times I use a map, I use either int or std::string as the key type; hence, I've got no problems with the definition of the hash function. The more I thought about it, the more I came to realize that I can't find any reason of using a std::map over a std::unordered_map in the case of keys with simple types -- I took a look at the interfaces, and didn't find any significant differences that would impact my code.
因此,问题是:是否有任何真正的理由使用std::map而不是std::unordered_map在简单类型的情况下,如int和std::string?
我是从严格的编程角度提出这个问题的——我知道它并不是完全标准的,而且它可能会给移植带来问题。
另外,我认为正确答案之一可能是“对于较小的数据集更有效”,因为开销更小(是真的吗?)——因此,我希望将这个问题限制在键数量非普通的情况下(>1 024)。
编辑:哦,我忘记了显而易见的(感谢GMan!)——是的,地图当然是有序的——我知道,我正在寻找其他原因。
如果你想比较std::map和std::unordered_map实现的速度,你可以使用谷歌的sparsehash项目,它有一个time_hash_map程序来计时。例如,在x86_64 Linux系统上使用gcc 4.4.2
$ ./time_hash_map
TR1 UNORDERED_MAP (4 byte objects, 10000000 iterations):
map_grow 126.1 ns (27427396 hashes, 40000000 copies) 290.9 MB
map_predict/grow 67.4 ns (10000000 hashes, 40000000 copies) 232.8 MB
map_replace 22.3 ns (37427396 hashes, 40000000 copies)
map_fetch 16.3 ns (37427396 hashes, 40000000 copies)
map_fetch_empty 9.8 ns (10000000 hashes, 0 copies)
map_remove 49.1 ns (37427396 hashes, 40000000 copies)
map_toggle 86.1 ns (20000000 hashes, 40000000 copies)
STANDARD MAP (4 byte objects, 10000000 iterations):
map_grow 225.3 ns ( 0 hashes, 20000000 copies) 462.4 MB
map_predict/grow 225.1 ns ( 0 hashes, 20000000 copies) 462.6 MB
map_replace 151.2 ns ( 0 hashes, 20000000 copies)
map_fetch 156.0 ns ( 0 hashes, 20000000 copies)
map_fetch_empty 1.4 ns ( 0 hashes, 0 copies)
map_remove 141.0 ns ( 0 hashes, 20000000 copies)
map_toggle 67.3 ns ( 0 hashes, 20000000 copies)
我只是想指出……有很多种unordered_map。
在哈希图上查找维基百科文章。根据所使用的实现的不同,查找、插入和删除方面的特征可能有很大差异。
这是我最担心的添加unordered_map到STL:他们将不得不选择一个特定的实现,因为我怀疑他们会走政策的道路,所以我们将被困在一个实现的平均使用,而没有其他情况…
例如,一些哈希映射具有线性重新哈希,其中不是一次重新哈希整个哈希映射,而是在每次插入时重新哈希一部分,这有助于分摊成本。
另一个例子:一些哈希映射使用一个简单的节点列表作为bucket,其他使用map,其他不使用节点,但找到最近的槽,最后一些将使用节点列表,但重新排序,以便最后访问的元素位于前面(像缓存一样)。
因此,目前我倾向于std::map或loki::AssocVector(用于冻结数据集)。
不要误解我的意思,我希望使用std::unordered_map,将来也可能会使用,但是当您想到实现它的所有方法和由此产生的各种性能时,很难“信任”这样一个容器的可移植性。
不要忘记map保持其元素的顺序。如果你不能放弃它,显然你不能使用unordered_map。
另外需要记住的一点是,unordered_map通常会使用更多的内存。Map只有一些内部指针和每个对象的内存。相反,unordered_map有一个大数组(在某些实现中会变得相当大),然后为每个对象提供额外的内存。如果需要内存感知,map应该会更好,因为它缺少大数组。
所以,如果你需要纯粹的查找-检索,我认为unordered_map是最好的方法。但总会有权衡,如果你负担不起,那你就不能使用它。
仅凭个人经验,我发现在主实体查找表中使用unordered_map而不是map时,性能有了巨大的改进(当然是度量的)。
另一方面,我发现它在重复插入和删除元素时要慢得多。它非常适合相对静态的元素集合,但如果您正在进行大量的插入和删除,那么哈希+桶似乎就会累加起来。(注意,这需要经过多次迭代。)