A recent talk about unordered_map in C++ made me realize that I should use unordered_map for most cases where I used map before, because of the efficiency of lookup ( amortized O(1) vs. O(log n) ). Most times I use a map, I use either int or std::string as the key type; hence, I've got no problems with the definition of the hash function. The more I thought about it, the more I came to realize that I can't find any reason of using a std::map over a std::unordered_map in the case of keys with simple types -- I took a look at the interfaces, and didn't find any significant differences that would impact my code.

因此,问题是:是否有任何真正的理由使用std::map而不是std::unordered_map在简单类型的情况下,如int和std::string?

我是从严格的编程角度提出这个问题的——我知道它并不是完全标准的,而且它可能会给移植带来问题。

另外,我认为正确答案之一可能是“对于较小的数据集更有效”,因为开销更小(是真的吗?)——因此,我希望将这个问题限制在键数量非普通的情况下(>1 024)。

编辑:哦,我忘记了显而易见的(感谢GMan!)——是的,地图当然是有序的——我知道,我正在寻找其他原因。


当前回答

我大致同意GMan的观点:根据使用类型的不同,std::map可以(而且通常)比std::tr1::unordered_map快(使用VS 2008 SP1中包含的实现)。

有几个复杂的因素需要记住。例如,在std::map中,您正在比较键,这意味着您只查看足够多的键的开头,以区分树的左右子分支。根据我的经验,几乎只有当你使用int这样可以在单个指令中进行比较的时候,你才会查看整个键。对于更典型的键类型,如std::string,通常只比较几个字符。

相比之下,一个像样的哈希函数总是查看整个键。IOW,即使查找表的复杂度是恒定的,哈希本身也具有大致的线性复杂度(尽管是键的长度,而不是项的数量)。使用长字符串作为键,std::map可能会在unordered_map开始搜索之前完成搜索。

其次,虽然有几种方法可以调整哈希表的大小,但大多数方法都非常慢——除非查找比插入和删除频繁得多,否则std::map通常会比std::unordered_map快。

当然,就像我在对你上一个问题的评论中提到的,你也可以使用树表。这既有优点也有缺点。一方面,它将最坏的情况限制在一棵树上。它还允许快速插入和删除,因为(至少当我这样做时)我使用了固定大小的表。消除所有的表大小调整可以让你的哈希表更简单,通常更快。

另一点:哈希和基于树的映射的需求是不同的。哈希显然需要一个哈希函数和一个相等比较,其中有序映射需要一个小于比较。当然,我提到的混合型需要两者兼备。当然,对于使用字符串作为键的常见情况,这并不是真正的问题,但某些类型的键比哈希更适合排序(反之亦然)。

其他回答

不要忘记map保持其元素的顺序。如果你不能放弃它,显然你不能使用unordered_map。

另外需要记住的一点是,unordered_map通常会使用更多的内存。Map只有一些内部指针和每个对象的内存。相反,unordered_map有一个大数组(在某些实现中会变得相当大),然后为每个对象提供额外的内存。如果需要内存感知,map应该会更好,因为它缺少大数组。

所以,如果你需要纯粹的查找-检索,我认为unordered_map是最好的方法。但总会有权衡,如果你负担不起,那你就不能使用它。

仅凭个人经验,我发现在主实体查找表中使用unordered_map而不是map时,性能有了巨大的改进(当然是度量的)。

另一方面,我发现它在重复插入和删除元素时要慢得多。它非常适合相对静态的元素集合,但如果您正在进行大量的插入和删除,那么哈希+桶似乎就会累加起来。(注意,这需要经过多次迭代。)

哈希表具有比普通map实现更高的常量,这对于小型容器非常重要。最大尺寸是10个,100个,甚至1000个或更多?常数和以前一样,但是O(log n)接近O(k)。(记住,对数复杂度仍然很好。)

一个好的哈希函数取决于你的数据的特征;所以如果我不打算看一个自定义哈希函数(但肯定可以改变我的想法,而且很容易,因为我typedef几乎所有的东西),即使默认选择执行体面的许多数据源,我发现map的有序性质是足够的帮助,最初我仍然默认映射而不是哈希表在这种情况下。

另外,这样您甚至不必考虑为其他类型(通常是UDT)编写哈希函数,只需编写op<(无论如何您都想要)。

以上所有的小补充:

当你需要按范围获取元素时,最好使用map,因为它们是排序的,你可以从一个边界迭代到另一个边界。

来自:http://www.cplusplus.com/reference/map/map/

在内部,map中的元素总是按照其内部比较对象(类型为Compare)指示的特定严格弱排序标准的键进行排序。

Map容器通过键访问单个元素通常比unordered_map容器慢,但它们允许基于它们的顺序对子集进行直接迭代。”

如果你想比较std::map和std::unordered_map实现的速度,你可以使用谷歌的sparsehash项目,它有一个time_hash_map程序来计时。例如,在x86_64 Linux系统上使用gcc 4.4.2

$ ./time_hash_map
TR1 UNORDERED_MAP (4 byte objects, 10000000 iterations):
map_grow              126.1 ns  (27427396 hashes, 40000000 copies)  290.9 MB
map_predict/grow       67.4 ns  (10000000 hashes, 40000000 copies)  232.8 MB
map_replace            22.3 ns  (37427396 hashes, 40000000 copies)
map_fetch              16.3 ns  (37427396 hashes, 40000000 copies)
map_fetch_empty         9.8 ns  (10000000 hashes,        0 copies)
map_remove             49.1 ns  (37427396 hashes, 40000000 copies)
map_toggle             86.1 ns  (20000000 hashes, 40000000 copies)

STANDARD MAP (4 byte objects, 10000000 iterations):
map_grow              225.3 ns  (       0 hashes, 20000000 copies)  462.4 MB
map_predict/grow      225.1 ns  (       0 hashes, 20000000 copies)  462.6 MB
map_replace           151.2 ns  (       0 hashes, 20000000 copies)
map_fetch             156.0 ns  (       0 hashes, 20000000 copies)
map_fetch_empty         1.4 ns  (       0 hashes,        0 copies)
map_remove            141.0 ns  (       0 hashes, 20000000 copies)
map_toggle             67.3 ns  (       0 hashes, 20000000 copies)