很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。

你对一本1.25美元的书有什么期待?

不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。

当有质数个桶时,数字的分布真的更均匀吗?

或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?


当前回答

http://computinglife.wordpress.com/2008/11/20/why-do-hash-functions-use-prime-numbers/

解释得很清楚,还有图片。

编辑:作为一个总结,使用质数是因为当数值乘以所选质数并将它们全部相加时,获得唯一值的可能性最大。例如,给定一个字符串,将每个字母的值与质数相乘,然后将它们全部相加,就会得到它的哈希值。

一个更好的问题是,为什么是数字31?

其他回答

Primes are used because you have good chances of obtaining a unique value for a typical hash-function which uses polynomials modulo P. Say, you use such hash-function for strings of length <= N, and you have a collision. That means that 2 different polynomials produce the same value modulo P. The difference of those polynomials is again a polynomial of the same degree N (or less). It has no more than N roots (this is here the nature of math shows itself, since this claim is only true for a polynomial over a field => prime number). So if N is much less than P, you are likely not to have a collision. After that, experiment can probably show that 37 is big enough to avoid collisions for a hash-table of strings which have length 5-10, and is small enough to use for calculations.

关于素数幂模的“数学的本质”是它们是有限域的一个组成部分。另外两个构建块是加法运算和乘法运算。素模的特殊性质是,它们用“常规”的加法和乘法运算形成一个有限域,只是取到模。这意味着每一个乘法都映射到一个不同的整数对质数求模,每一个加法也是如此。

质模的优势在于:

它们在二次哈希中选择次乘数时给予了最大的自由,除了0之外的所有乘数最终都将访问所有元素一次 如果所有哈希值都小于模量,则根本不会发生碰撞 随机质数比两个模的幂更好地混合,并压缩所有比特的信息,而不仅仅是一个子集

然而,它们有一个很大的缺点,它们需要整数除法,这需要很多(~ 15-40)个周期,即使在现代CPU上也是如此。用大约一半的计算就可以确保散列混合得很好。两次乘法和异移运算比一个质数模更容易混合。然后,我们可以使用任何哈希表的大小,哈希约简是最快的,对于2个表大小的幂,总共给出7个操作,对于任意大小的表,大约9个操作。

我最近研究了许多最快的哈希表实现,其中大多数都不使用质数模块。

哈希表索引的分布主要依赖于所使用的哈希函数。质数模量不能修复一个坏的哈希函数,一个好的哈希函数也不能从质数模量中受益。然而,在某些情况下,它们可能是有利的。例如,它可以修复半坏的哈希函数。

为了提供另一种观点,这里有一个网站:

http://www.codexon.com/posts/hash-functions-the-modulo-prime-myth

它认为你应该使用尽可能多的桶而不是四舍五入到质数桶。这似乎是个合理的可能性。直观地说,我当然可以看到桶的数量越多越好,但我无法对此进行数学论证。

抄袭我的其他答案https://stackoverflow.com/a/43126969/917428。有关更多细节和示例,请参阅它。

我相信这和电脑在2进制下工作有关。想想以10为基数的情况:

8%10 = 8 18%10 = 8 87865378%10 = 8

不管这个数是多少只要它以8结尾,它对10的模就是8。

选择一个足够大的、非2的幂的数字将确保哈希函数实际上是所有输入位的函数,而不是它们的子集。

假设表的大小(或模数)是T = (B*C)。如果你输入的散列是(N*A*B) N可以是任何整数,那么你的输出就不会很好地分布。因为每次n变成C、2C、3C等,你的输出就会开始重复。也就是说,你的输出只会分布在C位。注意这里的C是(T / HCF(表大小,哈希))。

这个问题可以通过制造hcf1来消除。质数是很好的选择。

另一个有趣的现象是当T = 2^N时。这些将给出与所有输入哈希的低N位完全相同的输出。由于每个数都可以表示为2的幂,当我们对任意数取T的模时,我们将减去所有2的幂形式的数,即>= N,因此总能得到特定模式的数,取决于输入。这也是一个糟糕的选择。

类似地,T作为10^N也是不好的,因为类似的原因(模式是十进制数而不是二进制数)。

因此,质数往往会给出更好的分布结果,因此是表大小的好选择。