很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
当前回答
为了提供另一种观点,这里有一个网站:
http://www.codexon.com/posts/hash-functions-the-modulo-prime-myth
它认为你应该使用尽可能多的桶而不是四舍五入到质数桶。这似乎是个合理的可能性。直观地说,我当然可以看到桶的数量越多越好,但我无法对此进行数学论证。
其他回答
只是把从答案中得到的一些想法写下来。
Hashing uses modulus so any value can fit into a given range We want to randomize collisions Randomize collision meaning there are no patterns as how collisions would happen, or, changing a small part in input would result a completely different hash value To randomize collision, avoid using the base (10 in decimal, 16 in hex) as modulus, because 11 % 10 -> 1, 21 % 10 -> 1, 31 % 10 -> 1, it shows a clear pattern of hash value distribution: value with same last digits will collide Avoid using powers of base (10^2, 10^3, 10^n) as modulus because it also creates a pattern: value with same last n digits matters will collide Actually, avoid using any thing that has factors other than itself and 1, because it creates a pattern: multiples of a factor will be hashed into selected values For example, 9 has 3 as factor, thus 3, 6, 9, ...999213 will always be hashed into 0, 3, 6 12 has 3 and 2 as factor, thus 2n will always be hashed into 0, 2, 4, 6, 8, 10, and 3n will always be hashed into 0, 3, 6, 9 This will be a problem if input is not evenly distributed, e.g. if many values are of 3n, then we only get 1/3 of all possible hash values and collision is high So by using a prime as a modulus, the only pattern is that multiple of the modulus will always hash into 0, otherwise hash values distributions are evenly spread
我想说,这个链接的第一个答案是我找到的关于这个问题的最清晰的答案。
考虑键K ={0,1,…,100}和一个哈希表,其中桶数为m = 12。因为3是12的因数,所以是3倍数的键将被散列到是3倍数的存储桶中:
键{0,12、24、36…}将被散列到bucket 0。 键{3,15日,27日,39岁,…}将被散列到桶3。 键{42 6日,18日,30日,…}将被散列到桶6。 键{9日,21日,33岁,45岁,…}将被散列到桶9。
如果K是均匀分布的(即K中的每个键出现的可能性都是相等的),那么m的选择就不是那么关键了。但是,如果K不是均匀分布的呢?想象最有可能出现的键是3的倍数。在这种情况下,所有不是3倍数的桶都很可能是空的(这在哈希表性能方面非常糟糕)。
这种情况比看起来更常见。例如,想象一下,您正在根据对象在内存中的存储位置来跟踪它们。如果您的计算机的字大小是4个字节,那么您将哈希键是4的倍数。不用说,选择m是4的倍数将是一个糟糕的选择:你将有3m/4个桶完全空了,所有的键都在剩下的m/4个桶中碰撞。
一般来说:
K中每一个与桶数m有公因数的键都将被哈希为这个因数的倍数。
因此,为了尽量减少碰撞,减少m和k的元素之间的公因数的数量是很重要的,这是如何实现的呢?通过选择m是一个因数很少的数,一个质数。
来自马里奥的回答。
对于一个哈希函数来说,重要的不仅仅是尽量减少冲突,而且是不可能在改变几个字节的同时保持相同的哈希。
假设你有一个方程: (x + y*z) % key = x且0<x<key且0<z<key。 如果key是一个质数n*y=key对于n中的每一个n为真,对于其他所有数为假。
一个key不是主要示例的例子: X =1, z=2, key=8 因为key/z=4仍然是一个自然数,4成为我们方程的一个解,在这种情况下(n/2)*y = key对于n中的每一个n都成立。这个方程的解的数量实际上翻了一番,因为8不是质数。
如果我们的攻击者已经知道8是方程的可能解,他可以将文件从产生8改为产生4,并且仍然得到相同的哈希值。
通常,一个简单的哈希函数的工作原理是,取输入的“组成部分”(在字符串的情况下是字符),将它们乘以某个常数的幂,然后以某种整数类型将它们相加。例如,一个字符串的典型哈希值(虽然不是特别好)可能是:
(first char) + k * (second char) + k^2 * (third char) + ...
然后,如果输入了一堆具有相同首字符的字符串,那么结果将都是相同的k模,至少在整数类型溢出之前是这样。
[举个例子,Java的字符串hashCode与此惊人地相似——它将字符的顺序颠倒,k=31。所以你会得到以31为模的惊人的关系在以相同方式结束的字符串之间,以及以2^32为模的惊人的关系在除了接近结尾的字符串之间都是相同的。这并没有严重扰乱哈希表行为。]
哈希表的工作原理是将哈希的模数除以桶的数量。
在哈希表中,不为可能的情况产生冲突是很重要的,因为冲突会降低哈希表的效率。
现在,假设有人将一大堆值放入一个哈希表中,这些值在项目之间有某种关系,比如所有的第一个字符都相同。我想说,这是一种相当可预测的使用模式,所以我们不希望它产生太多冲突。
It turns out that "because of the nature of maths", if the constant used in the hash, and the number of buckets, are coprime, then collisions are minimised in some common cases. If they are not coprime, then there are some fairly simple relationships between inputs for which collisions are not minimised. All the hashes come out equal modulo the common factor, which means they'll all fall into the 1/n th of the buckets which have that value modulo the common factor. You get n times as many collisions, where n is the common factor. Since n is at least 2, I'd say it's unacceptable for a fairly simple use case to generate at least twice as many collisions as normal. If some user is going to break our distribution into buckets, we want it to be a freak accident, not some simple predictable usage.
现在,哈希表实现显然无法控制放入其中的项。他们不能阻止他们之间的联系。所以要做的就是确保常量和桶数都是互质。这样你就不需要单独依靠“最后一个”分量来确定桶的模数相对于某个小的公共因子。据我所知,它们不一定是质数,只要是质素就可以了。
But if the hash function and the hashtable are written independently, then the hashtable doesn't know how the hash function works. It might be using a constant with small factors. If you're lucky it might work completely differently and be nonlinear. If the hash is good enough, then any bucket count is just fine. But a paranoid hashtable can't assume a good hash function, so should use a prime number of buckets. Similarly a paranoid hash function should use a largeish prime constant, to reduce the chance that someone uses a number of buckets which happens to have a common factor with the constant.
在实践中,我认为使用2的幂作为桶的数量是相当正常的。这很方便,并且省去了四处搜索或预先选择正确大小的质数的麻烦。所以你依赖于哈希函数而不是使用偶数乘数,这通常是一个安全的假设。但是,基于上面的哈希函数,您仍然会偶尔遇到糟糕的哈希行为,而素数桶计数可能会有进一步的帮助。
就我所知,提出“所有东西都必须是质数”的原则是在哈希表上进行良好分布的充分条件,而不是必要条件。它允许每个人进行互操作,而不需要假设其他人遵循相同的规则。
[Edit: there's another, more specialized reason to use a prime number of buckets, which is if you handle collisions with linear probing. Then you calculate a stride from the hashcode, and if that stride comes out to be a factor of the bucket count then you can only do (bucket_count / stride) probes before you're back where you started. The case you most want to avoid is stride = 0, of course, which must be special-cased, but to avoid also special-casing bucket_count / stride equal to a small integer, you can just make the bucket_count prime and not care what the stride is provided it isn't 0.]
这个问题与更合适的问题合并,为什么哈希表应该使用素数大小的数组,而不是2的幂。 对于哈希函数本身,这里有很多很好的答案,但对于相关的问题,为什么一些安全关键的哈希表,如glibc,使用质数大小的数组,目前还没有。
通常两张表的幂要快得多。这里有昂贵的h % n => h和位掩码,其中位掩码可以通过大小为n的clz(“计数前导零”)计算。模函数需要做整数除法,这比逻辑和要慢50倍。有一些技巧可以避免取模,比如使用Lemire的https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/,但通常快速哈希表使用2的幂,而安全哈希表使用质数。
为什么如此?
Security in this case is defined by attacks on the collision resolution strategy, which is with most hash tables just linear search in a linked list of collisions. Or with the faster open-addressing tables linear search in the table directly. So with power of 2 tables and some internal knowledge of the table, e.g. the size or the order of the list of keys provided by some JSON interface, you get the number of right bits used. The number of ones on the bitmask. This is typically lower than 10 bits. And for 5-10 bits it's trivial to brute force collisions even with the strongest and slowest hash functions. You don't get the full security of your 32bit or 64 bit hash functions anymore. And the point is to use fast small hash functions, not monsters such as murmur or even siphash.
因此,如果你为哈希表提供一个外部接口,比如DNS解析器、编程语言……你想要关心那些喜欢使用DOS服务的人。对这些人来说,用简单得多的方法关闭你的公共服务通常更容易,但这种情况确实发生了。所以人们确实关心。
因此,防止这种碰撞攻击的最佳选择是
1)使用质数表,因为
所有32位或64位都与查找桶相关,而不仅仅是几个。 哈希表的大小调整函数比double更自然。最好的生长函数是斐波那契数列,质数更接近于它,而不是翻倍。
2)使用更好的措施对抗实际攻击,加上2个尺寸的快速功率。
计算碰撞次数,并在检测到攻击时中止或休眠,即概率<1%的碰撞次数。比如100个32位哈希表。这就是djb的dns解析器所做的。 当检测到碰撞攻击时,将碰撞链表转换为O(log n)搜索而不是O(n)的树。这就是例如java所做的。
有一个广为流传的神话,更安全的哈希函数有助于防止这种攻击,这是错误的,正如我解释的那样。只有低比特是不安全的。这只适用于质数大小的表,但这将使用两个最慢方法的组合,慢哈希+慢质数模。
哈希表的哈希函数主要需要小(内联)和快速。安全性只能来自于防止冲突中的线性搜索。并且不要使用非常糟糕的哈希函数,比如对某些值不敏感的哈希函数(比如使用乘法时的\0)。
使用随机种子也是一个不错的选择,人们首先使用随机种子,但是有了足够的表信息,即使是随机种子也没有多大帮助,而动态语言通常使通过其他方法获取种子变得很简单,因为它存储在已知的内存位置中。