很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
当前回答
Primes are used because you have good chances of obtaining a unique value for a typical hash-function which uses polynomials modulo P. Say, you use such hash-function for strings of length <= N, and you have a collision. That means that 2 different polynomials produce the same value modulo P. The difference of those polynomials is again a polynomial of the same degree N (or less). It has no more than N roots (this is here the nature of math shows itself, since this claim is only true for a polynomial over a field => prime number). So if N is much less than P, you are likely not to have a collision. After that, experiment can probably show that 37 is big enough to avoid collisions for a hash-table of strings which have length 5-10, and is small enough to use for calculations.
其他回答
插入/从哈希表中检索时要做的第一件事是计算给定键的hashCode,然后通过执行hashCode % table_length将hashCode修剪为哈希表的大小来找到正确的bucket。这里有两个“陈述”,你很可能在某处读到过
如果对table_length使用2的幂,那么查找(hashCode(key) % 2^n)就像查找(hashCode(key) & (2^n -1))一样简单快捷。但是如果你为一个给定的键计算hashCode的函数不是很好,你肯定会在几个散列桶中聚集许多键。 但是,如果table_length使用质数,即使使用稍微愚蠢的hashCode函数,计算出来的hashCode也可以映射到不同的散列桶中。
这就是证明。
如果假设你的hashCode函数的结果是以下hashCode {x, 2x, 3x, 4x, 5x, 6x…},那么所有这些都将聚集在m个桶中,其中m = table_length/GreatestCommonFactor(table_length, x)。(验证/推导这个很简单)。现在可以执行以下操作之一来避免集群
确保你不会生成太多的hashCode,这些hashCode是另一个hashCode的倍数,比如{x, 2x, 3x, 4x, 5x, 6x…}。但如果你的hashTable应该有数百万个条目,这可能有点困难。 或者通过使GreatestCommonFactor(table_length, x)等于1使m等于table_length,即使table_length与x为coprime。如果x可以是任何数字,则确保table_length是质数。
来自- http://srinvis.blogspot.com/2006/07/hash-table-lengths-and-prime-numbers.html
我想为Steve Jessop的回答补充一些东西(我不能评论,因为我没有足够的声誉)。但我找到了一些有用的材料。他的回答很有帮助,但他犯了一个错误:桶的大小不应该是2的幂。我引用Thomas Cormen, Charles Leisersen等人写的《算法导论》263页
When using the division method, we usually avoid certain values of m. For example, m should not be a power of 2, since if m = 2^p, then h(k) is just the p lowest-order bits of k. Unless we know that all low-order p-bit patterns are equally likely, we are better off designing the hash function to depend on all the bits of the key. As Exercise 11.3-3 asks you to show, choosing m = 2^p-1 when k is a character string interpreted in radix 2^p may be a poor choice, because permuting the characters of k does not change its hash value.
希望能有所帮助。
这取决于哈希函数的选择。
许多哈希函数通过将数据中的各种元素与一些因子相乘,再乘以与机器的字大小相对应的2的幂的模(这个模可以通过让计算溢出来释放)来组合数据中的各种元素。
您不希望在数据元素的乘数和哈希表的大小之间有任何公共因子,因为这样可能会发生改变数据元素不会将数据分散到整个表上的情况。如果你为表的大小选择一个质数,这样的公因数是极不可能的。
另一方面,这些因数通常由奇数质数组成,因此在哈希表中使用2的幂也应该是安全的(例如,Eclipse在生成Java hashCode()方法时使用31)。
博士tl;
Index [hash(input)%2]将导致所有可能哈希值的一半和一段值发生冲突。Index [hash(input)%prime]导致所有可能哈希值中的<2的碰撞。将除数固定为表的大小还可以确保数字不能大于表。
对于一个哈希函数来说,重要的不仅仅是尽量减少冲突,而且是不可能在改变几个字节的同时保持相同的哈希。
假设你有一个方程: (x + y*z) % key = x且0<x<key且0<z<key。 如果key是一个质数n*y=key对于n中的每一个n为真,对于其他所有数为假。
一个key不是主要示例的例子: X =1, z=2, key=8 因为key/z=4仍然是一个自然数,4成为我们方程的一个解,在这种情况下(n/2)*y = key对于n中的每一个n都成立。这个方程的解的数量实际上翻了一番,因为8不是质数。
如果我们的攻击者已经知道8是方程的可能解,他可以将文件从产生8改为产生4,并且仍然得到相同的哈希值。