地图提供商(如谷歌或Yahoo!地图)指示方向?

I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).

Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)

实践中实际使用的算法是什么?

PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?

pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。

编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。


当前回答

这个问题在过去几年中一直是一个活跃的研究领域。主要思想是对图进行一次预处理,以加快所有后续查询的速度。有了这些附加信息,行程可以很快计算出来。尽管如此,Dijkstra算法仍然是所有优化的基础。

Arachnid描述了双向搜索和基于层次信息的边缘修剪的用法。这些加速技术工作得很好,但最新的算法在任何方面都优于这些技术。使用目前的算法,在大陆公路网上计算最短路径的时间可大大少于1毫秒。快速实现未修改的Dijkstra算法大约需要10秒。

工程快速路线规划算法概述了该领域的研究进展。有关进一步信息,请参阅那篇论文的参考文献。

已知最快的算法不使用数据中关于道路层次状态的信息,即它是高速公路还是本地道路。相反,他们在预处理步骤中计算自己的层次结构,优化以加快路线规划。这种预计算可以用来精简搜索:在Dijkstra算法中,远离起点和目的地的缓慢道路不需要考虑。好处是非常好的性能和结果的正确性保证。

第一个优化的路线规划算法只处理静态道路网络,这意味着图中的边缘具有固定的成本值。这在实践中是不正确的,因为我们想要考虑交通堵塞或车辆相关限制等动态信息。最新的算法也可以处理这些问题,但仍有问题需要解决,研究还在继续。

如果您需要最短路径距离来计算TSP的解,那么您可能对包含源和目的地之间所有距离的矩阵感兴趣。为此,您可以考虑使用高速公路层次结构计算多对多最短路径。请注意,在过去的两年里,这已经通过更新的方法得到了改进。

其他回答

我以前没有在谷歌或微软或雅虎地图工作过,所以我不能告诉你他们是如何工作的。

然而,我确实为一家能源公司设计了一个定制的供应链优化系统,其中包括为他们的卡车车队提供调度和路由应用程序。然而,我们对路线的标准远比建筑、交通减速或车道封闭的地方更具体。

我们采用了一种称为ACO(蚁群优化)的技术来调度和路线卡车。该技术是一种人工智能技术,应用于旅行推销员问题来解决路由问题。ACO的技巧是基于路由的已知事实构建错误计算,以便图求解模型知道何时退出(当错误足够小时)。

你可以谷歌ACO或TSP找到更多关于这个技术。然而,我没有使用过任何开源AI工具,所以不能推荐一个(尽管我听说SWARM非常全面)。

这纯粹是我的猜测,但我认为他们可能会使用覆盖有向图的影响图数据结构,以缩小搜索域。这将允许搜索算法在所需行程较长时将路径导向主要路线。

鉴于这是一个谷歌应用程序,我们也可以合理地假设,许多神奇的功能都是通过大量缓存完成的。如果缓存前5%最常见的谷歌地图路由请求,我不会感到惊讶(20%?50%?)的请求需要通过简单的查询来回答。

像Dijkstra算法这样的图算法将无法工作,因为图是巨大的。

这个论点并不一定成立,因为Dijkstra通常不会查看完整的图,而只是一个非常小的子集(图的互联性越好,这个子集就越小)。

对于行为良好的图,Dijkstra实际上可能表现得相当好。另一方面,通过仔细的参数化,A*总是表现得一样好,甚至更好。您是否已经尝试过它对数据的处理方式?

也就是说,我也很有兴趣听听其他人的经历。当然,像谷歌Map搜索这样的突出例子是特别有趣的。我可以想象类似于有向近邻启发式的东西。

Probably similar to the answer on pre-computed routes between major locations and layered maps, but my understanding is that in games, to speed up A*, you have a map that is very coarse for macro navigation, and a fine-grained map for navigation to the boundary of macro directions. So you have 2 small paths to calculate, and hence your search space is much much smaller than simply doing a single path to the destination. And if you're in the business of doing this a lot, you'd have a lot of that data pre-computed so at least part of the search is a search for pre-computed data, rather than a search for a path.

我有点惊讶这里没有提到Floyd Warshall的算法。这个算法很像Dijkstra算法。它还有一个很好的特性,那就是它允许你计算,只要你想继续允许更多的中间顶点。因此,它自然会很快找到使用州际公路或高速公路的路线。