在Python多处理库中,是否有支持多个参数的pool.map变体?
import multiprocessing
text = "test"
def harvester(text, case):
X = case[0]
text + str(X)
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
pool.map(harvester(text, case), case, 1)
pool.close()
pool.join()
另一种方法是将列表列表传递给单参数例程:
import os
from multiprocessing import Pool
def task(args):
print "PID =", os.getpid(), ", arg1 =", args[0], ", arg2 =", args[1]
pool = Pool()
pool.map(task, [
[1,2],
[3,4],
[5,6],
[7,8]
])
然后可以用自己喜欢的方法构造一个参数列表。
import time
from multiprocessing import Pool
def f1(args):
vfirst, vsecond, vthird = args[0] , args[1] , args[2]
print(f'First Param: {vfirst}, Second value: {vsecond} and finally third value is: {vthird}')
pass
if __name__ == '__main__':
p = Pool()
result = p.map(f1, [['Dog','Cat','Mouse']])
p.close()
p.join()
print(result)
对我来说,以下是一个简单明了的解决方案:
from multiprocessing.pool import ThreadPool
from functools import partial
from time import sleep
from random import randint
def dosomething(var,s):
sleep(randint(1,5))
print(var)
return var + s
array = ["a", "b", "c", "d", "e"]
with ThreadPool(processes=5) as pool:
resp_ = pool.map(partial(dosomething,s="2"), array)
print(resp_)
输出:
a
b
d
e
c
['a2', 'b2', 'c2', 'd2', 'e2']
您可以使用以下两个函数,以避免为每个新函数编写包装器:
import itertools
from multiprocessing import Pool
def universal_worker(input_pair):
function, args = input_pair
return function(*args)
def pool_args(function, *args):
return zip(itertools.repeat(function), zip(*args))
将函数函数与参数arg_0、arg_1和arg_2的列表一起使用,如下所示:
pool = Pool(n_core)
list_model = pool.map(universal_worker, pool_args(function, arg_0, arg_1, arg_2)
pool.close()
pool.join()
这里有很多答案,但似乎没有一个能提供适用于任何版本的Python 2/3兼容代码。如果您希望代码能够正常工作,这将适用于以下任一Python版本:
# For python 2/3 compatibility, define pool context manager
# to support the 'with' statement in Python 2
if sys.version_info[0] == 2:
from contextlib import contextmanager
@contextmanager
def multiprocessing_context(*args, **kwargs):
pool = multiprocessing.Pool(*args, **kwargs)
yield pool
pool.terminate()
else:
multiprocessing_context = multiprocessing.Pool
之后,您可以使用常规的Python3方式进行多处理。例如:
def _function_to_run_for_each(x):
return x.lower()
with multiprocessing_context(processes=3) as pool:
results = pool.map(_function_to_run_for_each, ['Bob', 'Sue', 'Tim']) print(results)
将在Python 2或Python 3中工作。