在Python多处理库中,是否有支持多个参数的pool.map变体?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

当前回答

我认为以下内容会更好:

def multi_run_wrapper(args):
   return add(*args)

def add(x,y):
    return x+y

if __name__ == "__main__":
    from multiprocessing import Pool
    pool = Pool(4)
    results = pool.map(multi_run_wrapper,[(1,2),(2,3),(3,4)])
    print results

输出

[3, 5, 7]

其他回答

答案取决于版本和情况。最近版本的Python(从3.3开始)的最一般的答案首先由J.F.Sebastian在下面描述。1它使用Pool.starmap方法,接受一系列参数元组。然后,它会自动将每个元组中的参数解包,并将它们传递给给定的函数:

import multiprocessing
from itertools import product

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with multiprocessing.Pool(processes=3) as pool:
        results = pool.starmap(merge_names, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

对于早期版本的Python,您需要编写一个助手函数来显式地解包参数。如果要与一起使用,还需要编写一个包装器,将Pool转换为上下文管理器。(感谢穆恩指出了这一点。)

import multiprocessing
from itertools import product
from contextlib import contextmanager

def merge_names(a, b):
    return '{} & {}'.format(a, b)

def merge_names_unpack(args):
    return merge_names(*args)

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(merge_names_unpack, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

在更简单的情况下,使用固定的第二个参数,也可以使用partial,但仅在Python 2.7+中使用。

import multiprocessing
from functools import partial
from contextlib import contextmanager

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(partial(merge_names, b='Sons'), names)
    print(results)

# Output: ['Brown & Sons', 'Wilson & Sons', 'Bartlett & Sons', ...

1.这大部分都是由他的答案激发的,而他的答案很可能应该被接受。但由于这本书一直停留在顶端,似乎最好为未来读者改进它。

我认为以下内容会更好:

def multi_run_wrapper(args):
   return add(*args)

def add(x,y):
    return x+y

if __name__ == "__main__":
    from multiprocessing import Pool
    pool = Pool(4)
    results = pool.map(multi_run_wrapper,[(1,2),(2,3),(3,4)])
    print results

输出

[3, 5, 7]

您可以使用以下两个函数,以避免为每个新函数编写包装器:

import itertools
from multiprocessing import Pool

def universal_worker(input_pair):
    function, args = input_pair
    return function(*args)

def pool_args(function, *args):
    return zip(itertools.repeat(function), zip(*args))

将函数函数与参数arg_0、arg_1和arg_2的列表一起使用,如下所示:

pool = Pool(n_core)
list_model = pool.map(universal_worker, pool_args(function, arg_0, arg_1, arg_2)
pool.close()
pool.join()

这里有很多答案,但似乎没有一个能提供适用于任何版本的Python 2/3兼容代码。如果您希望代码能够正常工作,这将适用于以下任一Python版本:

# For python 2/3 compatibility, define pool context manager
# to support the 'with' statement in Python 2
if sys.version_info[0] == 2:
    from contextlib import contextmanager
    @contextmanager
    def multiprocessing_context(*args, **kwargs):
        pool = multiprocessing.Pool(*args, **kwargs)
        yield pool
        pool.terminate()
else:
    multiprocessing_context = multiprocessing.Pool

之后,您可以使用常规的Python3方式进行多处理。例如:

def _function_to_run_for_each(x):
       return x.lower()
with multiprocessing_context(processes=3) as pool:
    results = pool.map(_function_to_run_for_each, ['Bob', 'Sue', 'Tim'])    print(results)

将在Python 2或Python 3中工作。

更好的方法是使用修饰符,而不是手工编写包装函数。特别是当您有很多函数要映射时,装饰器将通过避免为每个函数编写包装器来节省时间。通常,修饰函数是不可选择的,但是我们可以使用functools来解决它。更多讨论可以在这里找到。

以下是示例:

def unpack_args(func):
    from functools import wraps
    @wraps(func)
    def wrapper(args):
        if isinstance(args, dict):
            return func(**args)
        else:
            return func(*args)
    return wrapper

@unpack_args
def func(x, y):
    return x + y

然后你可以用压缩的参数来映射它:

np, xlist, ylist = 2, range(10), range(10)
pool = Pool(np)
res = pool.map(func, zip(xlist, ylist))
pool.close()
pool.join()

当然,您可能总是在Python3中使用Pool.starmap(>=3.3),正如其他答案中提到的那样。