在Python多处理库中,是否有支持多个参数的pool.map变体?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

当前回答

这里有很多答案,但似乎没有一个能提供适用于任何版本的Python 2/3兼容代码。如果您希望代码能够正常工作,这将适用于以下任一Python版本:

# For python 2/3 compatibility, define pool context manager
# to support the 'with' statement in Python 2
if sys.version_info[0] == 2:
    from contextlib import contextmanager
    @contextmanager
    def multiprocessing_context(*args, **kwargs):
        pool = multiprocessing.Pool(*args, **kwargs)
        yield pool
        pool.terminate()
else:
    multiprocessing_context = multiprocessing.Pool

之后,您可以使用常规的Python3方式进行多处理。例如:

def _function_to_run_for_each(x):
       return x.lower()
with multiprocessing_context(processes=3) as pool:
    results = pool.map(_function_to_run_for_each, ['Bob', 'Sue', 'Tim'])    print(results)

将在Python 2或Python 3中工作。

其他回答

如何获取多个参数:

def f1(args):
    a, b, c = args[0] , args[1] , args[2]
    return a+b+c

if __name__ == "__main__":
    import multiprocessing
    pool = multiprocessing.Pool(4) 

    result1 = pool.map(f1, [ [1,2,3] ])
    print(result1)

这里有另一种方法,IMHO比提供的任何其他答案都更简单和优雅。

该程序有一个函数,它获取两个参数,打印它们并打印总和:

import multiprocessing

def main():

    with multiprocessing.Pool(10) as pool:
        params = [ (2, 2), (3, 3), (4, 4) ]
        pool.starmap(printSum, params)
    # end with

# end function

def printSum(num1, num2):
    mySum = num1 + num2
    print('num1 = ' + str(num1) + ', num2 = ' + str(num2) + ', sum = ' + str(mySum))
# end function

if __name__ == '__main__':
    main()

输出为:

num1 = 2, num2 = 2, sum = 4
num1 = 3, num2 = 3, sum = 6
num1 = 4, num2 = 4, sum = 8

有关更多信息,请参阅python文档:

https://docs.python.org/3/library/multiprocessing.html#module-多处理工具

特别是要检查星图功能。

我使用的是Python 3.6,我不确定这是否适用于较旧的Python版本

为什么在文档中没有这样一个非常直接的例子,我不确定。

这可能是另一种选择。技巧在于包装器函数,它返回传递给pool.map的另一个函数。下面的代码读取一个输入数组,对于其中的每个(唯一)元素,返回该元素在数组中出现的次数(即计数)。例如,如果输入是

np.eye(3) = [ [1. 0. 0.]
              [0. 1. 0.]
              [0. 0. 1.]]

然后零出现6次,一出现3次

import numpy as np
from multiprocessing.dummy import Pool as ThreadPool
from multiprocessing import cpu_count


def extract_counts(label_array):
    labels = np.unique(label_array)
    out = extract_counts_helper([label_array], labels)
    return out

def extract_counts_helper(args, labels):
    n = max(1, cpu_count() - 1)
    pool = ThreadPool(n)
    results = {}
    pool.map(wrapper(args, results), labels)
    pool.close()
    pool.join()
    return results

def wrapper(argsin, results):
    def inner_fun(label):
        label_array = argsin[0]
        counts = get_label_counts(label_array, label)
        results[label] = counts
    return inner_fun

def get_label_counts(label_array, label):
    return sum(label_array.flatten() == label)

if __name__ == "__main__":
    img = np.ones([2,2])
    out = extract_counts(img)
    print('input array: \n', img)
    print('label counts: ', out)
    print("========")
           
    img = np.eye(3)
    out = extract_counts(img)
    print('input array: \n', img)
    print('label counts: ', out)
    print("========")
    
    img = np.random.randint(5, size=(3, 3))
    out = extract_counts(img)
    print('input array: \n', img)
    print('label counts: ', out)
    print("========")

你应该得到:

input array: 
 [[1. 1.]
 [1. 1.]]
label counts:  {1.0: 4}
========
input array: 
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
label counts:  {0.0: 6, 1.0: 3}
========
input array: 
 [[4 4 0]
 [2 4 3]
 [2 3 1]]
label counts:  {0: 1, 1: 1, 2: 2, 3: 2, 4: 3}
========
text = "test"

def unpack(args):
    return args[0](*args[1:])

def harvester(text, case):
    X = case[0]
    text+ str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    # args is a list of tuples 
    # with the function to execute as the first item in each tuple
    args = [(harvester, text, c) for c in case]
    # doing it this way, we can pass any function
    # and we don't need to define a wrapper for each different function
    # if we need to use more than one
    pool.map(unpack, args)
    pool.close()
    pool.join()

pool.map是否有支持多个参数的变体?

Python 3.3包含pool.starmap()方法:

#!/usr/bin/env python3
from functools import partial
from itertools import repeat
from multiprocessing import Pool, freeze_support

def func(a, b):
    return a + b

def main():
    a_args = [1,2,3]
    second_arg = 1
    with Pool() as pool:
        L = pool.starmap(func, [(1, 1), (2, 1), (3, 1)])
        M = pool.starmap(func, zip(a_args, repeat(second_arg)))
        N = pool.map(partial(func, b=second_arg), a_args)
        assert L == M == N

if __name__=="__main__":
    freeze_support()
    main()

对于旧版本:

#!/usr/bin/env python2
import itertools
from multiprocessing import Pool, freeze_support

def func(a, b):
    print a, b

def func_star(a_b):
    """Convert `f([1,2])` to `f(1,2)` call."""
    return func(*a_b)

def main():
    pool = Pool()
    a_args = [1,2,3]
    second_arg = 1
    pool.map(func_star, itertools.izip(a_args, itertools.repeat(second_arg)))

if __name__=="__main__":
    freeze_support()
    main()

输出

1 1
2 1
3 1

注意这里是如何使用itertools.izip()和itertools.crepeat()的。

由于@unsubu提到的错误,您不能在Python 2.6上使用functools.partial()或类似功能,因此应该显式定义简单包装函数func_tar()。另请参阅uptimebox建议的解决方法。