在Python多处理库中,是否有支持多个参数的pool.map变体?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

当前回答

Python 2的更好解决方案:

from multiprocessing import Pool
def func((i, (a, b))):
    print i, a, b
    return a + b
pool = Pool(3)
pool.map(func, [(0,(1,2)), (1,(2,3)), (2,(3, 4))])

输出

2 3 4

1 2 3

0 1 2

out[]:

[3, 5, 7]

其他回答

将所有参数存储为元组数组。

该示例表示,通常调用函数为:

def mainImage(fragCoord: vec2, iResolution: vec3, iTime: float) -> vec3:

而是传递一个元组并解压缩参数:

def mainImage(package_iter) -> vec3:
    fragCoord = package_iter[0]
    iResolution = package_iter[1]
    iTime = package_iter[2]

预先使用循环构建元组:

package_iter = []
iResolution = vec3(nx, ny, 1)
for j in range((ny-1), -1, -1):
    for i in range(0, nx, 1):
        fragCoord: vec2 = vec2(i, j)
        time_elapsed_seconds = 10
        package_iter.append((fragCoord, iResolution, time_elapsed_seconds))

然后通过传递元组数组来执行所有using map:

array_rgb_values = []

with concurrent.futures.ProcessPoolExecutor() as executor:
    for val in executor.map(mainImage, package_iter):
        fragColor = val
        ir = clip(int(255* fragColor.r), 0, 255)
        ig = clip(int(255* fragColor.g), 0, 255)
        ib = clip(int(255* fragColor.b), 0, 255)

        array_rgb_values.append((ir, ig, ib))

我知道Python有*和**用于开箱,但我还没有尝试过。

使用高级库并发期货也比使用低级多处理库更好。

有一个叫做pathos的多处理分支(注意:使用GitHub上的版本),它不需要starmap——map函数镜像Python map的API,因此map可以接受多个参数。

使用pathos,您通常也可以在解释器中执行多处理,而不是陷入__main__块。Pathos将在经过一些轻微的更新后发布——主要是转换为Python3.x。

  Python 2.7.5 (default, Sep 30 2013, 20:15:49)
  [GCC 4.2.1 (Apple Inc. build 5566)] on darwin
  Type "help", "copyright", "credits" or "license" for more information.
  >>> def func(a,b):
  ...     print a,b
  ...
  >>>
  >>> from pathos.multiprocessing import ProcessingPool
  >>> pool = ProcessingPool(nodes=4)
  >>> pool.map(func, [1,2,3], [1,1,1])
  1 1
  2 1
  3 1
  [None, None, None]
  >>>
  >>> # also can pickle stuff like lambdas
  >>> result = pool.map(lambda x: x**2, range(10))
  >>> result
  [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
  >>>
  >>> # also does asynchronous map
  >>> result = pool.amap(pow, [1,2,3], [4,5,6])
  >>> result.get()
  [1, 32, 729]
  >>>
  >>> # or can return a map iterator
  >>> result = pool.imap(pow, [1,2,3], [4,5,6])
  >>> result
  <processing.pool.IMapIterator object at 0x110c2ffd0>
  >>> list(result)
  [1, 32, 729]

pathos有几种方法可以让你得到星图的精确行为。

>>> def add(*x):
...   return sum(x)
...
>>> x = [[1,2,3],[4,5,6]]
>>> import pathos
>>> import numpy as np
>>> # use ProcessPool's map and transposing the inputs
>>> pp = pathos.pools.ProcessPool()
>>> pp.map(add, *np.array(x).T)
[6, 15]
>>> # use ProcessPool's map and a lambda to apply the star
>>> pp.map(lambda x: add(*x), x)
[6, 15]
>>> # use a _ProcessPool, which has starmap
>>> _pp = pathos.pools._ProcessPool()
>>> _pp.starmap(add, x)
[6, 15]
>>>

另一种方法是将列表列表传递给单参数例程:

import os
from multiprocessing import Pool

def task(args):
    print "PID =", os.getpid(), ", arg1 =", args[0], ", arg2 =", args[1]

pool = Pool()

pool.map(task, [
        [1,2],
        [3,4],
        [5,6],
        [7,8]
    ])

然后可以用自己喜欢的方法构造一个参数列表。

text = "test"

def unpack(args):
    return args[0](*args[1:])

def harvester(text, case):
    X = case[0]
    text+ str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    # args is a list of tuples 
    # with the function to execute as the first item in each tuple
    args = [(harvester, text, c) for c in case]
    # doing it this way, we can pass any function
    # and we don't need to define a wrapper for each different function
    # if we need to use more than one
    pool.map(unpack, args)
    pool.close()
    pool.join()

在官方文档中,它只支持一个可迭代的参数。在这种情况下,我喜欢使用apply_async。如果是你,我会:

from multiprocessing import Process, Pool, Manager

text = "test"
def harvester(text, case, q = None):
 X = case[0]
 res = text+ str(X)
 if q:
  q.put(res)
 return res


def block_until(q, results_queue, until_counter=0):
 i = 0
 while i < until_counter:
  results_queue.put(q.get())
  i+=1

if __name__ == '__main__':
 pool = multiprocessing.Pool(processes=6)
 case = RAW_DATASET
 m = Manager()
 q = m.Queue()
 results_queue = m.Queue() # when it completes results will reside in this queue
 blocking_process = Process(block_until, (q, results_queue, len(case)))
 blocking_process.start()
 for c in case:
  try:
   res = pool.apply_async(harvester, (text, case, q = None))
   res.get(timeout=0.1)
  except:
   pass
 blocking_process.join()