在Python多处理库中,是否有支持多个参数的pool.map变体?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

当前回答

有一个叫做pathos的多处理分支(注意:使用GitHub上的版本),它不需要starmap——map函数镜像Python map的API,因此map可以接受多个参数。

使用pathos,您通常也可以在解释器中执行多处理,而不是陷入__main__块。Pathos将在经过一些轻微的更新后发布——主要是转换为Python3.x。

  Python 2.7.5 (default, Sep 30 2013, 20:15:49)
  [GCC 4.2.1 (Apple Inc. build 5566)] on darwin
  Type "help", "copyright", "credits" or "license" for more information.
  >>> def func(a,b):
  ...     print a,b
  ...
  >>>
  >>> from pathos.multiprocessing import ProcessingPool
  >>> pool = ProcessingPool(nodes=4)
  >>> pool.map(func, [1,2,3], [1,1,1])
  1 1
  2 1
  3 1
  [None, None, None]
  >>>
  >>> # also can pickle stuff like lambdas
  >>> result = pool.map(lambda x: x**2, range(10))
  >>> result
  [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
  >>>
  >>> # also does asynchronous map
  >>> result = pool.amap(pow, [1,2,3], [4,5,6])
  >>> result.get()
  [1, 32, 729]
  >>>
  >>> # or can return a map iterator
  >>> result = pool.imap(pow, [1,2,3], [4,5,6])
  >>> result
  <processing.pool.IMapIterator object at 0x110c2ffd0>
  >>> list(result)
  [1, 32, 729]

pathos有几种方法可以让你得到星图的精确行为。

>>> def add(*x):
...   return sum(x)
...
>>> x = [[1,2,3],[4,5,6]]
>>> import pathos
>>> import numpy as np
>>> # use ProcessPool's map and transposing the inputs
>>> pp = pathos.pools.ProcessPool()
>>> pp.map(add, *np.array(x).T)
[6, 15]
>>> # use ProcessPool's map and a lambda to apply the star
>>> pp.map(lambda x: add(*x), x)
[6, 15]
>>> # use a _ProcessPool, which has starmap
>>> _pp = pathos.pools._ProcessPool()
>>> _pp.starmap(add, x)
[6, 15]
>>>

其他回答

在官方文档中,它只支持一个可迭代的参数。在这种情况下,我喜欢使用apply_async。如果是你,我会:

from multiprocessing import Process, Pool, Manager

text = "test"
def harvester(text, case, q = None):
 X = case[0]
 res = text+ str(X)
 if q:
  q.put(res)
 return res


def block_until(q, results_queue, until_counter=0):
 i = 0
 while i < until_counter:
  results_queue.put(q.get())
  i+=1

if __name__ == '__main__':
 pool = multiprocessing.Pool(processes=6)
 case = RAW_DATASET
 m = Manager()
 q = m.Queue()
 results_queue = m.Queue() # when it completes results will reside in this queue
 blocking_process = Process(block_until, (q, results_queue, len(case)))
 blocking_process.start()
 for c in case:
  try:
   res = pool.apply_async(harvester, (text, case, q = None))
   res.get(timeout=0.1)
  except:
   pass
 blocking_process.join()

对于Python 2,可以使用此技巧

def fun(a, b):
    return a + b

pool = multiprocessing.Pool(processes=6)
b = 233
pool.map(lambda x:fun(x, b), range(1000))

将所有参数存储为元组数组。

该示例表示,通常调用函数为:

def mainImage(fragCoord: vec2, iResolution: vec3, iTime: float) -> vec3:

而是传递一个元组并解压缩参数:

def mainImage(package_iter) -> vec3:
    fragCoord = package_iter[0]
    iResolution = package_iter[1]
    iTime = package_iter[2]

预先使用循环构建元组:

package_iter = []
iResolution = vec3(nx, ny, 1)
for j in range((ny-1), -1, -1):
    for i in range(0, nx, 1):
        fragCoord: vec2 = vec2(i, j)
        time_elapsed_seconds = 10
        package_iter.append((fragCoord, iResolution, time_elapsed_seconds))

然后通过传递元组数组来执行所有using map:

array_rgb_values = []

with concurrent.futures.ProcessPoolExecutor() as executor:
    for val in executor.map(mainImage, package_iter):
        fragColor = val
        ir = clip(int(255* fragColor.r), 0, 255)
        ig = clip(int(255* fragColor.g), 0, 255)
        ib = clip(int(255* fragColor.b), 0, 255)

        array_rgb_values.append((ir, ig, ib))

我知道Python有*和**用于开箱,但我还没有尝试过。

使用高级库并发期货也比使用低级多处理库更好。

如何获取多个参数:

def f1(args):
    a, b, c = args[0] , args[1] , args[2]
    return a+b+c

if __name__ == "__main__":
    import multiprocessing
    pool = multiprocessing.Pool(4) 

    result1 = pool.map(f1, [ [1,2,3] ])
    print(result1)

另一个简单的选择是将函数参数包装在元组中,然后包装应该在元组中传递的参数。在处理大量数据时,这可能并不理想。我相信它会为每个元组创建副本。

from multiprocessing import Pool

def f((a,b,c,d)):
    print a,b,c,d
    return a + b + c +d

if __name__ == '__main__':
    p = Pool(10)
    data = [(i+0,i+1,i+2,i+3) for i in xrange(10)]
    print(p.map(f, data))
    p.close()
    p.join()

以某种随机顺序给出输出:

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
7 8 9 10
6 7 8 9
8 9 10 11
9 10 11 12
[6, 10, 14, 18, 22, 26, 30, 34, 38, 42]