到目前为止,我已经避免了测试多线程代码的噩梦,因为它似乎是一个太大的雷区。我想知道人们是如何测试依赖于线程的代码以获得成功执行的,或者人们是如何测试那些仅在两个线程以给定方式交互时才会出现的问题的?
对于今天的程序员来说,这似乎是一个非常关键的问题,恕我直言,将我们的知识集中在这个问题上是很有用的。
到目前为止,我已经避免了测试多线程代码的噩梦,因为它似乎是一个太大的雷区。我想知道人们是如何测试依赖于线程的代码以获得成功执行的,或者人们是如何测试那些仅在两个线程以给定方式交互时才会出现的问题的?
对于今天的程序员来说,这似乎是一个非常关键的问题,恕我直言,将我们的知识集中在这个问题上是很有用的。
当前回答
Testing MT code for correctness is, as already stated, quite a hard problem. In the end it boils down to ensuring that there are no incorrectly synchronised data races in your code. The problem with this is that there are infinitely many possibilities of thread execution (interleavings) over which you do not have much control (be sure to read this article, though). In simple scenarios it might be possible to actually prove correctness by reasoning but this is usually not the case. Especially if you want to avoid/minimize synchronization and not go for the most obvious/easiest synchronization option.
我遵循的一种方法是编写高度并发的测试代码,以使潜在的未检测到的数据竞争有可能发生。然后我运行这些测试一段时间:)我曾经无意中看到一个演讲,一些计算机科学家展示了一个这样做的工具(根据规格随机设计测试,然后疯狂地运行它们,同时检查定义的不变量是否被破坏)。
顺便说一下,我认为测试MT代码的这一方面在这里还没有提到:确定可以随机检查的代码不变量。不幸的是,找到这些不变量也是一个相当困难的问题。此外,它们在执行期间可能不会一直保持,因此您必须找到/强制执行可以期望它们为真的执行点。将代码执行到这样的状态也是一个难题(并且本身可能会引起并发性问题)。呼,这太难了!
一些有趣的链接可供阅读:
确定性交错:允许强制执行某些线程交错,然后检查不变量的框架 jMock Blitzer:压力测试同步 assertConcurrent:压力测试同步的JUnit版本 测试并发代码:简要介绍两种主要方法:蛮力(压力测试)或确定性(使用不变量)
其他回答
测试线程代码和非常复杂的系统的另一种方法是通过模糊测试。 它不是很好,也不能找到所有的东西,但它可能是有用的,而且操作简单。
引用:
Fuzz testing or fuzzing is a software testing technique that provides random data("fuzz") to the inputs of a program. If the program fails (for example, by crashing, or by failing built-in code assertions), the defects can be noted. The great advantage of fuzz testing is that the test design is extremely simple, and free of preconceptions about system behavior. ... Fuzz testing is often used in large software development projects that employ black box testing. These projects usually have a budget to develop test tools, and fuzz testing is one of the techniques which offers a high benefit to cost ratio. ... However, fuzz testing is not a substitute for exhaustive testing or formal methods: it can only provide a random sample of the system's behavior, and in many cases passing a fuzz test may only demonstrate that a piece of software handles exceptions without crashing, rather than behaving correctly. Thus, fuzz testing can only be regarded as a bug-finding tool rather than an assurance of quality.
我曾经有过测试线程代码的不幸任务,这绝对是我写过的最难的测试。
在编写测试时,我使用委托和事件的组合。基本上,它都是关于使用PropertyNotifyChanged事件和WaitCallback或某种轮询的ConditionalWaiter。
我不确定这是否是最好的方法,但它对我来说是有效的。
您可以使用EasyMock。使测试实例线程安全
一个简单的测试模式可以用于一些(不是所有!)用例,就是多次重复相同的测试。例如,假设你有一个方法:
def process(input):
# Spawns several threads to do the job
# ...
return output
创建一堆测试:
process(input1) -> expect to return output1
process(input2) -> expect to return output2
...
现在将每个测试运行多次。
如果流程的实现包含一个微小的错误(例如死锁、竞态条件等),出现的概率为0.1%,那么运行1000次测试,则该错误至少出现一次的概率为64%。运行测试10000次,得到>99%的概率。
这个问题发布已经有一段时间了,但仍然没有答案…
Kleolb02的答案很好。我会试着讲得更详细一些。
有一种方法,我在c#代码中练习过。对于单元测试,您应该能够编写可重复的测试,这是多线程代码中的最大挑战。因此,我的回答旨在将异步代码强制到同步工作的测试装置中。
这是Gerard Meszaros的书“xUnit测试模式”中的一个想法,被称为“Humble Object”(第695页):必须将核心逻辑代码和任何闻起来像异步代码的东西分开。这将产生一个用于核心逻辑的类,它同步地工作。
这将使您能够以同步方式测试核心逻辑代码。您可以绝对控制对核心逻辑进行调用的时间,因此可以进行可重复的测试。这就是分离核心逻辑和异步逻辑的好处。
这个核心逻辑需要由另一个类来包装,这个类负责异步接收对核心逻辑的调用,并将这些调用委托给核心逻辑。产品代码将只通过该类访问核心逻辑。因为这个类应该只委托调用,所以它是一个没有太多逻辑的非常“愚蠢”的类。因此,您可以将这个异步工作类的单元测试保持在最小值。
在此之上的任何测试(测试类之间的交互)都是组件测试。同样在这种情况下,如果你坚持使用“Humble Object”模式,你应该能够完全控制时间。