使用new_list=my_list时,对new_list的任何修改都会每次更改my_list。为什么会出现这种情况,以及如何克隆或复制列表以防止出现这种情况?
当前回答
在Python中克隆或复制列表有哪些选项?
在Python 3中,可以使用以下方法制作浅层副本:
a_copy = a_list.copy()
在Python 2和3中,您可以获得一个浅层副本,其中包含原始文件的完整切片:
a_copy = a_list[:]
解释
复制列表有两种语义方法。浅副本创建相同对象的新列表,深副本创建包含新等效对象的新的列表。
浅表副本
浅层副本仅复制列表本身,它是对列表中对象的引用的容器。如果包含的对象本身是可变的,并且其中一个对象发生了更改,则更改将反映在两个列表中。
在Python 2和3中有不同的方法来实现这一点。Python 2的方式也适用于Python 3。
Python 2
在Python 2中,制作列表的简单副本的惯用方法是使用原始列表的完整片段:
a_copy = a_list[:]
您也可以通过列表构造函数传递列表来完成相同的任务,
a_copy = list(a_list)
但是使用构造函数效率较低:
>>> timeit
>>> l = range(20)
>>> min(timeit.repeat(lambda: l[:]))
0.30504298210144043
>>> min(timeit.repeat(lambda: list(l)))
0.40698814392089844
Python 3
在Python 3中,列表获取list.copy方法:
a_copy = a_list.copy()
在Python 3.5中:
>>> import timeit
>>> l = list(range(20))
>>> min(timeit.repeat(lambda: l[:]))
0.38448613602668047
>>> min(timeit.repeat(lambda: list(l)))
0.6309100328944623
>>> min(timeit.repeat(lambda: l.copy()))
0.38122922903858125
生成另一个指针不会生成副本
使用new_list=my_list,然后在每次my_list更改时修改new_list。这是为什么?
mylist只是一个指向内存中实际列表的名称。当你说new_list=my_list时,你不是在复制,只是在添加另一个指向内存中原始列表的名称。当我们复制列表时,也会遇到类似的问题。
>>> l = [[], [], []]
>>> l_copy = l[:]
>>> l_copy
[[], [], []]
>>> l_copy[0].append('foo')
>>> l_copy
[['foo'], [], []]
>>> l
[['foo'], [], []]
列表只是指向内容的指针数组,因此浅层副本只是复制指针,因此您有两个不同的列表,但它们具有相同的内容。要复制内容,您需要一个深度副本。
深度副本
要制作列表的深度副本,在Python 2或3中,请在复制模块中使用deepcopy:
import copy
a_deep_copy = copy.deepcopy(a_list)
要演示这如何允许我们创建新的子列表:
>>> import copy
>>> l
[['foo'], [], []]
>>> l_deep_copy = copy.deepcopy(l)
>>> l_deep_copy[0].pop()
'foo'
>>> l_deep_copy
[[], [], []]
>>> l
[['foo'], [], []]
所以我们看到,深度复制的列表与原始列表完全不同。你可以滚动自己的函数,但不要。通过使用标准库的deepcopy功能,您很可能会创建一些错误。
不使用eval
你可能会看到这是一种深度复制的方式,但不要这样做:
problematic_deep_copy = eval(repr(a_list))
这是很危险的,特别是当你从一个你不信任的来源评估某件事情时。如果要复制的子元素没有一个可以求值以重现等效元素的表示,那么它就不可靠。它的性能也较差。
在64位Python 2.7中:
>>> import timeit
>>> import copy
>>> l = range(10)
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
27.55826997756958
>>> min(timeit.repeat(lambda: eval(repr(l))))
29.04534101486206
在64位Python 3.5上:
>>> import timeit
>>> import copy
>>> l = list(range(10))
>>> min(timeit.repeat(lambda: copy.deepcopy(l)))
16.84255409205798
>>> min(timeit.repeat(lambda: eval(repr(l))))
34.813894678023644
其他回答
new_list=my_list实际上并没有创建第二个列表。赋值只是将引用复制到列表,而不是实际的列表,因此new_list和my_list在赋值后都引用相同的列表。
要实际复制列表,您有几个选项:
您可以使用内置的list.copy()方法(从Python 3.3开始提供):new_list=old_list.copy()您可以对其进行切片:new_list=旧列表[:]亚历克斯·马特利(Alex Martelli)(至少在2007年)对此的看法是,这是一种奇怪的语法,永远使用它都没有意义(在他看来,下一篇更具可读性)。您可以使用内置的list()构造函数:new_list=列表(old_list)您可以使用泛型copy.copy():导入副本new_list=复制副本(old_list)这比list()慢一点,因为它必须首先找到old_list的数据类型。如果您还需要复制列表中的元素,请使用genericcopy.deepcopy():导入副本new_list=复制.depcopy(old_list)显然是最慢、最需要内存的方法,但有时不可避免。这是递归操作;它将处理任意级别的嵌套列表(或其他容器)。
例子:
import copy
class Foo(object):
def __init__(self, val):
self.val = val
def __repr__(self):
return f'Foo({self.val!r})'
foo = Foo(1)
a = ['foo', foo]
b = a.copy()
c = a[:]
d = list(a)
e = copy.copy(a)
f = copy.deepcopy(a)
# edit orignal list and instance
a.append('baz')
foo.val = 5
print(f'original: {a}\nlist.copy(): {b}\nslice: {c}\nlist(): {d}\ncopy: {e}\ndeepcopy: {f}')
结果:
original: ['foo', Foo(5), 'baz']
list.copy(): ['foo', Foo(5)]
slice: ['foo', Foo(5)]
list(): ['foo', Foo(5)]
copy: ['foo', Foo(5)]
deepcopy: ['foo', Foo(1)]
框架挑战:对于您的应用程序,您实际上需要复制吗?
我经常看到试图以某种迭代方式修改列表副本的代码。为了构造一个简单的示例,假设我们有非工作(因为不应该修改x)代码,如:
x = [8, 6, 7, 5, 3, 0, 9]
y = x
for index, element in enumerate(y):
y[index] = element * 2
# Expected result:
# x = [8, 6, 7, 5, 3, 0, 9] <-- this is where the code is wrong.
# y = [16, 12, 14, 10, 6, 0, 18]
自然,人们会问如何使y成为x的副本,而不是同一列表的名称,这样for循环就会做正确的事情。
但这是错误的做法。从功能上讲,我们真正想做的是在原始列表的基础上创建一个新列表。
我们不需要先做一份拷贝,通常也不应该。
当我们需要对每个元素应用逻辑时
这方面的自然工具是列表理解。这样,我们编写逻辑,告诉我们期望结果中的元素如何与原始元素相关联。它简单、优雅、富有表现力;并且我们避免了在for循环中修改y副本的需要(因为分配给迭代变量不会影响列表-原因与我们首先想要副本的原因相同!)。
对于上面的示例,它看起来像:
x = [8, 6, 7, 5, 3, 0, 9]
y = [element * 2 for element in x]
列表理解非常强大;我们还可以使用它们通过带有if子句的规则过滤掉元素,并且我们可以链接for和if子句(它的工作方式与相应的命令式代码类似,相同的子句的顺序相同;只有最终将在结果列表中结束的值才会移到前面,而不是在“最里面”部分)。如果计划是在修改副本以避免问题的同时迭代原始文件,那么通常有一种更令人愉快的方法来实现这一点,即理解过滤列表。
当我们需要按位置拒绝或插入特定元素时
假设我们有这样的东西
x = [8, 6, 7, 5, 3, 0, 9]
y = x
del y[2:-2] # oops, x was changed inappropriately
我们可以通过将我们不需要的部分放在一起来建立一个列表,而不是先创建一个单独的副本来删除我们不想要的部分。因此:
x = [8, 6, 7, 5, 3, 0, 9]
y = x[:2] + x[-2:]
通过切片处理插入、替换等操作是一项练习。只需说明您希望结果包含哪些子序列。这种情况的一个特殊情况是制作一个反向副本-假设我们需要一个新列表(而不仅仅是反向迭代),我们可以通过切片直接创建它,而不是克隆然后使用.reverse。
这些方法(如列表理解)还有一个优点,即它们将所需的结果创建为表达式,而不是通过程序性地就地修改现有对象(并返回None)。这对于以“流畅”风格编写代码更为方便。
deepcopy选项是唯一适用于我的方法:
from copy import deepcopy
a = [ [ list(range(1, 3)) for i in range(3) ] ]
b = deepcopy(a)
b[0][1]=[3]
print('Deep:')
print(a)
print(b)
print('-----------------------------')
a = [ [ list(range(1, 3)) for i in range(3) ] ]
b = a*1
b[0][1]=[3]
print('*1:')
print(a)
print(b)
print('-----------------------------')
a = [ [ list(range(1, 3)) for i in range(3) ] ]
b = a[:]
b[0][1]=[3]
print('Vector copy:')
print(a)
print(b)
print('-----------------------------')
a = [ [ list(range(1, 3)) for i in range(3) ] ]
b = list(a)
b[0][1]=[3]
print('List copy:')
print(a)
print(b)
print('-----------------------------')
a = [ [ list(range(1, 3)) for i in range(3) ] ]
b = a.copy()
b[0][1]=[3]
print('.copy():')
print(a)
print(b)
print('-----------------------------')
a = [ [ list(range(1, 3)) for i in range(3) ] ]
b = a
b[0][1]=[3]
print('Shallow:')
print(a)
print(b)
print('-----------------------------')
导致输出:
Deep:
[[[1, 2], [1, 2], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
*1:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
Vector copy:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
List copy:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
.copy():
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
Shallow:
[[[1, 2], [3], [1, 2]]]
[[[1, 2], [3], [1, 2]]]
-----------------------------
菲利克斯已经给出了一个很好的答案,但我想我应该对各种方法进行速度比较:
10.59秒(105.9µs/itn)-copy.depcopy(旧列表)10.16秒(101.6µs/itn)-纯Python Copy()方法使用deepcopy复制类1.488秒(14.88µs/itn)-纯Python Copy()方法不复制类(仅dicts/lists/tuples)0.325秒(3.25µs/itn)-对于old_list:new_list.append(项目)中的项目0.217秒(2.17µs/itn)-[i代表old_list](列表理解)0.186秒(1.86µs/itn)-复制副本(old_list)0.075秒(0.75µs/itn)-列表(旧列表)0.053秒(0.53µs/itn)-新列表=[];新列表扩展(旧列表)0.039秒(0.39µs/itn)-old_list[:](列表切片)
所以最快的是列表切片。但请注意,与copy.deepcopy()和python版本不同,copy.copy()、list[:]和list(list)不会复制列表中的任何列表、字典和类实例,因此如果原始列表发生变化,它们也会在复制的列表中发生变化,反之亦然。
(如果有人感兴趣或想提出任何问题,以下是脚本:)
from copy import deepcopy
class old_class:
def __init__(self):
self.blah = 'blah'
class new_class(object):
def __init__(self):
self.blah = 'blah'
dignore = {str: None, unicode: None, int: None, type(None): None}
def Copy(obj, use_deepcopy=True):
t = type(obj)
if t in (list, tuple):
if t == tuple:
# Convert to a list if a tuple to
# allow assigning to when copying
is_tuple = True
obj = list(obj)
else:
# Otherwise just do a quick slice copy
obj = obj[:]
is_tuple = False
# Copy each item recursively
for x in xrange(len(obj)):
if type(obj[x]) in dignore:
continue
obj[x] = Copy(obj[x], use_deepcopy)
if is_tuple:
# Convert back into a tuple again
obj = tuple(obj)
elif t == dict:
# Use the fast shallow dict copy() method and copy any
# values which aren't immutable (like lists, dicts etc)
obj = obj.copy()
for k in obj:
if type(obj[k]) in dignore:
continue
obj[k] = Copy(obj[k], use_deepcopy)
elif t in dignore:
# Numeric or string/unicode?
# It's immutable, so ignore it!
pass
elif use_deepcopy:
obj = deepcopy(obj)
return obj
if __name__ == '__main__':
import copy
from time import time
num_times = 100000
L = [None, 'blah', 1, 543.4532,
['foo'], ('bar',), {'blah': 'blah'},
old_class(), new_class()]
t = time()
for i in xrange(num_times):
Copy(L)
print 'Custom Copy:', time()-t
t = time()
for i in xrange(num_times):
Copy(L, use_deepcopy=False)
print 'Custom Copy Only Copying Lists/Tuples/Dicts (no classes):', time()-t
t = time()
for i in xrange(num_times):
copy.copy(L)
print 'copy.copy:', time()-t
t = time()
for i in xrange(num_times):
copy.deepcopy(L)
print 'copy.deepcopy:', time()-t
t = time()
for i in xrange(num_times):
L[:]
print 'list slicing [:]:', time()-t
t = time()
for i in xrange(num_times):
list(L)
print 'list(L):', time()-t
t = time()
for i in xrange(num_times):
[i for i in L]
print 'list expression(L):', time()-t
t = time()
for i in xrange(num_times):
a = []
a.extend(L)
print 'list extend:', time()-t
t = time()
for i in xrange(num_times):
a = []
for y in L:
a.append(y)
print 'list append:', time()-t
t = time()
for i in xrange(num_times):
a = []
a.extend(i for i in L)
print 'generator expression extend:', time()-t
在Python中,请记住:
list1 = ['apples','bananas','pineapples']
list2 = list1
List2没有存储实际的列表,而是对list1的引用。因此,当您对list1执行任何操作时,list2也会发生变化。使用copy模块(非默认,在pip上下载)制作列表的原始副本(对于简单列表,copy.copy();对于嵌套列表,copy。deepcopy())。这将生成一个不会随第一个列表而更改的副本。
推荐文章
- 每n秒运行特定代码
- SQLAlchemy是否有与Django的get_or_create等价的函数?
- 如何将python datetime转换为字符串,具有可读格式的日期?
- 美丽的汤和提取div及其内容的ID
- 在Python中重置生成器对象
- 用Python构建最小的插件架构
- model.eval()在pytorch中做什么?
- Tensorflow 2.0:模块“Tensorflow”没有属性“Session”
- 从环境文件中读入环境变量
- 在OSX 10.11中安装Scrapy时,“OSError: [Errno 1]操作不允许”(El Capitan)(系统完整性保护)
- 如何删除熊猫数据帧的最后一行数据
- 我如何在熊猫中找到数字列?
- 检查pandas数据框架索引中是否存在值
- 计算熊猫数量的最有效方法是什么?
- 如何在python中验证日期字符串格式?