我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
当前回答
如果你認為Lambdas是壞的,那麼不要再閱讀。 如要求,你可以用一個表達寫下快速和記憶效益的解決方案:
x = {'a':1, 'b':2}
y = {'b':10, 'c':11}
z = (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(x, y)
print z
{'a': 1, 'c': 11, 'b': 10}
print x
{'a': 1, 'b': 2}
如上所述,使用两行或写一个函数可能是一个更好的方式去。
其他回答
z1 = dict(x.items() + y.items())
z2 = dict(x, **y)
在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)'
100000 loops, best of 3: 1.53 usec per loop
示例2:不超越的字典,将252条短线地图到整条,反之亦然:
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'
10000 loops, best of 3: 26.9 usec per loop
z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!
在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:
from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))
% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop
z0 = dict(x)
z0.update(y)
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop
你也可以这样写作
z0 = x.copy()
z0.update(y)
正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。
重复 / 深度更新 a dict
def deepupdate(original, update):
"""
Recursively update a dict.
Subdict's won't be overwritten but also updated.
"""
for key, value in original.iteritems():
if key not in update:
update[key] = value
elif isinstance(value, dict):
deepupdate(value, update[key])
return update
示威:
pluto_original = {
'name': 'Pluto',
'details': {
'tail': True,
'color': 'orange'
}
}
pluto_update = {
'name': 'Pluutoo',
'details': {
'color': 'blue'
}
}
print deepupdate(pluto_original, pluto_update)
结果:
{
'name': 'Pluutoo',
'details': {
'color': 'blue',
'tail': True
}
}
谢谢Radnaw的编辑。
在这里和其他地方绘制想法,我已经理解了一个功能:
def merge(*dicts, **kv):
return { k:v for d in list(dicts) + [kv] for k,v in d.items() }
使用(在Python 3中测试):
assert (merge({1:11,'a':'aaa'},{1:99, 'b':'bbb'},foo='bar')==\
{1: 99, 'foo': 'bar', 'b': 'bbb', 'a': 'aaa'})
assert (merge(foo='bar')=={'foo': 'bar'})
assert (merge({1:11},{1:99},foo='bar',baz='quux')==\
{1: 99, 'foo': 'bar', 'baz':'quux'})
assert (merge({1:11},{1:99})=={1: 99})
你可以用Lambda。
一种替代:
z = x.copy()
z.update(y)
在Python3中,项目方法不再返回一个列表,而是一个视图,它像一个集一样作用。
dict(x.items() | y.items())
dict(x.viewitems() | y.viewitems())
编辑:
首先,请注意,在 Python 3 中, dic(x、 **y) 技巧不会工作,除非 y 中的键是线条。
此外,Raymond Hettinger的链路图答案是相当优雅的,因为它可以作为论点采取任意数量的论点,但从论点看起来它顺序地通过每个搜索的所有论点的列表:
In [1]: from collections import ChainMap
In [2]: from string import ascii_uppercase as up, ascii_lowercase as lo; x = dict(zip(lo, up)); y = dict(zip(up, lo))
In [3]: chainmap_dict = ChainMap(y, x)
In [4]: union_dict = dict(x.items() | y.items())
In [5]: timeit for k in union_dict: union_dict[k]
100000 loops, best of 3: 2.15 µs per loop
In [6]: timeit for k in chainmap_dict: chainmap_dict[k]
10000 loops, best of 3: 27.1 µs per loop
我是 Chainmap 的粉丝,但看起来不太实用,在那里可能有很多搜索。