我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

z1 = dict(x.items() + y.items())
z2 = dict(x, **y)

在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。

% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)' 
100000 loops, best of 3: 1.53 usec per loop

示例2:不超越的字典,将252条短线地图到整条,反之亦然:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'               
10000 loops, best of 3: 26.9 usec per loop

z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!

在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:

from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))

% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop

z0 = dict(x)
z0.update(y)

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop

你也可以这样写作

z0 = x.copy()
z0.update(y)

正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。

其他回答

如果你認為Lambdas是壞的,那麼不要再閱讀。 如要求,你可以用一個表達寫下快速和記憶效益的解決方案:

x = {'a':1, 'b':2}
y = {'b':10, 'c':11}
z = (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(x, y)
print z
{'a': 1, 'c': 11, 'b': 10}
print x
{'a': 1, 'b': 2}

如上所述,使用两行或写一个函数可能是一个更好的方式去。

我将所提出的与 perfplot 比较,并发现

x | y   # Python 3.9+

是最快的解决方案,与旧的好解决方案

{**x, **y}

temp = x.copy()
temp.update(y)

此分類上一篇


重复字符的代码:

from collections import ChainMap
from itertools import chain
import perfplot


def setup(n):
    x = dict(zip(range(n), range(n)))
    y = dict(zip(range(n, 2 * n), range(n, 2 * n)))
    return x, y


def copy_update(x, y):
    temp = x.copy()
    temp.update(y)
    return temp


def add_items(x, y):
    return dict(list(x.items()) + list(y.items()))


def curly_star(x, y):
    return {**x, **y}


def chain_map(x, y):
    return dict(ChainMap({}, y, x))


def itertools_chain(x, y):
    return dict(chain(x.items(), y.items()))


def python39_concat(x, y):
    return x | y


b = perfplot.bench(
    setup=setup,
    kernels=[
        copy_update,
        add_items,
        curly_star,
        chain_map,
        itertools_chain,
        python39_concat,
    ],
    labels=[
        "copy_update",
        "dict(list(x.items()) + list(y.items()))",
        "{**x, **y}",
        "chain_map",
        "itertools.chain",
        "x | y",
    ],
    n_range=[2 ** k for k in range(18)],
    xlabel="len(x), len(y)",
    equality_check=None,
)
b.save("out.png")
b.show()

此外,当您使用.items() (Python 3.0 之前),您正在创建一个新的列表,包含从字典中的项目. 如果您的字典是大,那么它是相当多的顶部(两个大列表将被扔掉,一旦合并的字典创建)。更新() 可以更有效地工作,因为它可以通过第二个字典项目为项目。

在时间方面:

>>> timeit.Timer("dict(x, **y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.52571702003479
>>> timeit.Timer("temp = x.copy()\ntemp.update(y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.694622993469238
>>> timeit.Timer("dict(x.items() + y.items())", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
41.484580039978027

此外,字典创建的关键词论点仅在Python 2.3中添加,而复制()和更新()将在较旧版本中工作。

z1 = dict(x.items() + y.items())
z2 = dict(x, **y)

在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。

% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)' 
100000 loops, best of 3: 1.53 usec per loop

示例2:不超越的字典,将252条短线地图到整条,反之亦然:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'               
10000 loops, best of 3: 26.9 usec per loop

z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!

在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:

from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))

% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop

z0 = dict(x)
z0.update(y)

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop

你也可以这样写作

z0 = x.copy()
z0.update(y)

正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = dict(x.items() + y.items())
print z

对于两个字典中的关键物品(“b”),您可以通过将最后一个放在输出中来控制哪个。