我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
当前回答
z1 = dict(x.items() + y.items())
z2 = dict(x, **y)
在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)'
100000 loops, best of 3: 1.53 usec per loop
示例2:不超越的字典,将252条短线地图到整条,反之亦然:
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'
10000 loops, best of 3: 26.9 usec per loop
z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!
在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:
from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))
% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop
z0 = dict(x)
z0.update(y)
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop
你也可以这样写作
z0 = x.copy()
z0.update(y)
正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。
其他回答
一个联合的OP的两个词典会是这样的东西:
{'a': 1, 'b': 2, 10, 'c': 11}
具体而言,两个实体(x 和 y)的联盟包含所有 x 和/或 y 的元素,不幸的是,OP 所要求的不是联盟,尽管职位的标题。
我的下面的代码既不优雅,也不是单线,但我认为它与联盟的意义一致。
从OP的例子:
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = {}
for k, v in x.items():
if not k in z:
z[k] = [(v)]
else:
z[k].append((v))
for k, v in y.items():
if not k in z:
z[k] = [(v)]
else:
z[k].append((v))
{'a': [1], 'b': [2, 10], 'c': [11]}
无论你想要的列表都可以改变,但上述将工作,如果一个词典包含列表(和列表)作为每个词典中的值。
这是如此愚蠢,即.update 没有回报,我只是使用一个简单的助理功能来解决问题:
def merge(dict1,*dicts):
for dict2 in dicts:
dict1.update(dict2)
return dict1
例子:
merge(dict1,dict2)
merge(dict1,dict2,dict3)
merge(dict1,dict2,dict3,dict4)
merge({},dict1,dict2) # this one returns a new copy
另一个,更细致的选择:
z = dict(x, **y)
注意:这已成为一个受欢迎的答案,但重要的是要指出的是,如果 y 有任何不紧密的密钥,事实上,这完全是CPython实施细节的滥用,并且它不在Python 3或PyPy,IronPython,或Jython工作。
在Python3中,项目方法不再返回一个列表,而是一个视图,它像一个集一样作用。
dict(x.items() | y.items())
dict(x.viewitems() | y.viewitems())
编辑:
首先,请注意,在 Python 3 中, dic(x、 **y) 技巧不会工作,除非 y 中的键是线条。
此外,Raymond Hettinger的链路图答案是相当优雅的,因为它可以作为论点采取任意数量的论点,但从论点看起来它顺序地通过每个搜索的所有论点的列表:
In [1]: from collections import ChainMap
In [2]: from string import ascii_uppercase as up, ascii_lowercase as lo; x = dict(zip(lo, up)); y = dict(zip(up, lo))
In [3]: chainmap_dict = ChainMap(y, x)
In [4]: union_dict = dict(x.items() | y.items())
In [5]: timeit for k in union_dict: union_dict[k]
100000 loops, best of 3: 2.15 µs per loop
In [6]: timeit for k in chainmap_dict: chainmap_dict[k]
10000 loops, best of 3: 27.1 µs per loop
我是 Chainmap 的粉丝,但看起来不太实用,在那里可能有很多搜索。
我认为我的丑陋的单线只需要在这里。
z = next(z.update(y) or z for z in [x.copy()])
# or
z = (lambda z: z.update(y) or z)(x.copy())
单一表达,永远不要敢用它。
我知道Python 3有这个 {**x, **y} 事物,它是正确的事情使用(以及转到Python 3 如果你仍然有Python 2是正确的事情)。