我如何在0和1之间迭代0.1步?

这表示step参数不能为零:

for i in range(0, 1, 0.1):
    print(i)

当前回答

与R的seq函数类似,这个函数在给定正确的步长值的情况下以任意顺序返回一个序列。最后一个值等于停止值。

def seq(start, stop, step=1):
    n = int(round((stop - start)/float(step)))
    if n > 1:
        return([start + step*i for i in range(n+1)])
    elif n == 1:
        return([start])
    else:
        return([])

结果

seq(1, 5, 0.5)

[1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

seq(10, 0, -1)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

seq(10, 0, -2)

[10, 8, 6, 4, 2, 0]

seq(1, 1)

[1]

其他回答

最佳解决方案:没有舍入误差

>>> step = .1
>>> N = 10     # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

或者,对于一组范围而不是一组数据点(例如,连续函数),使用:

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

实现一个函数:将x / pow(step, -1)替换为f(x / pow(step, -1)),并定义f。 例如:

>>> import math
>>> def f(x):
        return math.sin(x)

>>> step = .1
>>> rnge = 1     # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]

[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505, 
 0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
 0.7833269096274834, 0.8414709848078965]

Range()只能处理整数,不能处理浮点数。

使用一个列表推导式来获得一个步骤列表:

[x * 0.1 for x in range(0, 10)]

更一般地说,生成器理解最小化内存分配:

xs = (x * 0.1 for x in range(0, 10))
for x in xs:
    print(x)

为了解决浮点精度问题,可以使用Decimal模块。

这要求在编写代码时将int或float转换为Decimal,但如果确实需要这种便利,则可以传递str并修改函数。

from decimal import Decimal


def decimal_range(*args):

    zero, one = Decimal('0'), Decimal('1')

    if len(args) == 1:
        start, stop, step = zero, args[0], one
    elif len(args) == 2:
        start, stop, step = args + (one,)
    elif len(args) == 3:
        start, stop, step = args
    else:
        raise ValueError('Expected 1 or 2 arguments, got %s' % len(args))

    if not all([type(arg) == Decimal for arg in (start, stop, step)]):
        raise ValueError('Arguments must be passed as <type: Decimal>')

    # neglect bad cases
    if (start == stop) or (start > stop and step >= zero) or \
                          (start < stop and step <= zero):
        return []

    current = start
    while abs(current) < abs(stop):
        yield current
        current += step

输出样本-

from decimal import Decimal as D

list(decimal_range(D('2')))
# [Decimal('0'), Decimal('1')]
list(decimal_range(D('2'), D('4.5')))
# [Decimal('2'), Decimal('3'), Decimal('4')]
list(decimal_range(D('2'), D('4.5'), D('0.5')))
# [Decimal('2'), Decimal('2.5'), Decimal('3.0'), Decimal('3.5'), Decimal('4.0')]
list(decimal_range(D('2'), D('4.5'), D('-0.5')))
# []
list(decimal_range(D('2'), D('-4.5'), D('-0.5')))
# [Decimal('2'),
#  Decimal('1.5'),
#  Decimal('1.0'),
#  Decimal('0.5'),
#  Decimal('0.0'),
#  Decimal('-0.5'),
#  Decimal('-1.0'),
#  Decimal('-1.5'),
#  Decimal('-2.0'),
#  Decimal('-2.5'),
#  Decimal('-3.0'),
#  Decimal('-3.5'),
#  Decimal('-4.0')]

scipy有一个内置的函数arange,它泛化了Python的range()构造函数,以满足您对浮点数处理的需求。

从scipy进口安排

我的版本使用原始的范围函数来创建移位的乘法指标。这允许原始的range函数使用相同的语法。 我做了两个版本,一个使用浮点,一个使用Decimal,因为我发现在某些情况下,我想避免浮点算法引入的舍入漂移。

它与range/xrange中的空集结果一致。

仅向任何一个函数传递一个数值都会将标准范围输出返回到输入参数的整数上限值(因此如果给它5.5,它将返回range(6))。

编辑:下面的代码现在可以在pypi: Franges上作为包使用

## frange.py
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
    _xrange = xrange
except NameError:
    _xrange = range

def frange(start, stop = None, step = 1):
    """frange generates a set of floating point values over the 
    range [start, stop) with step size step

    frange([start,] stop [, step ])"""

    if stop is None:
        for x in _xrange(int(ceil(start))):
            yield x
    else:
        # create a generator expression for the index values
        indices = (i for i in _xrange(0, int((stop-start)/step)))  
        # yield results
        for i in indices:
            yield start + step*i

## drange.py
import decimal
from math import ceil
# find best range function available to version (2.7.x / 3.x.x)
try:
    _xrange = xrange
except NameError:
    _xrange = range

def drange(start, stop = None, step = 1, precision = None):
    """drange generates a set of Decimal values over the
    range [start, stop) with step size step

    drange([start,] stop, [step [,precision]])"""

    if stop is None:
        for x in _xrange(int(ceil(start))):
            yield x
    else:
        # find precision
        if precision is not None:
            decimal.getcontext().prec = precision
        # convert values to decimals
        start = decimal.Decimal(start)
        stop = decimal.Decimal(stop)
        step = decimal.Decimal(step)
        # create a generator expression for the index values
        indices = (
            i for i in _xrange(
                0, 
                ((stop-start)/step).to_integral_value()
            )
        )  
        # yield results
        for i in indices:
            yield float(start + step*i)

## testranges.py
import frange
import drange
list(frange.frange(0, 2, 0.5)) # [0.0, 0.5, 1.0, 1.5]
list(drange.drange(0, 2, 0.5, precision = 6)) # [0.0, 0.5, 1.0, 1.5]
list(frange.frange(3)) # [0, 1, 2]
list(frange.frange(3.5)) # [0, 1, 2, 3]
list(frange.frange(0,10, -1)) # []