我如何在0和1之间迭代0.1步?

这表示step参数不能为零:

for i in range(0, 1, 0.1):
    print(i)

当前回答

More_itertools是一个第三方库,它实现了numeric_range工具:

import more_itertools as mit


for x in mit.numeric_range(0, 1, 0.1):
    print("{:.1f}".format(x))

输出

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

这个工具也适用于十进制和分数。

其他回答

下面是我的解决方案,它可以很好地使用float_range(- 1,0,0.01),并且没有浮点表示错误。它不是很快,但工作得很好:

from decimal import Decimal

def get_multiplier(_from, _to, step):
    digits = []
    for number in [_from, _to, step]:
        pre = Decimal(str(number)) % 1
        digit = len(str(pre)) - 2
        digits.append(digit)
    max_digits = max(digits)
    return float(10 ** (max_digits))


def float_range(_from, _to, step, include=False):
    """Generates a range list of floating point values over the Range [start, stop]
       with step size step
       include=True - allows to include right value to if possible
       !! Works fine with floating point representation !!
    """
    mult = get_multiplier(_from, _to, step)
    # print mult
    int_from = int(round(_from * mult))
    int_to = int(round(_to * mult))
    int_step = int(round(step * mult))
    # print int_from,int_to,int_step
    if include:
        result = range(int_from, int_to + int_step, int_step)
        result = [r for r in result if r <= int_to]
    else:
        result = range(int_from, int_to, int_step)
    # print result
    float_result = [r / mult for r in result]
    return float_result


print float_range(-1, 0, 0.01,include=False)

assert float_range(1.01, 2.06, 5.05 % 1, True) ==\
[1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01, 2.06]

assert float_range(1.01, 2.06, 5.05 % 1, False)==\
[1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01]

与其直接使用小数点,不如用你想要多少点来表示,这要安全得多。否则,浮点舍入错误很可能会给您一个错误的结果。

使用NumPy库中的linspace函数(它不是标准库的一部分,但相对容易获得)。Linspace需要返回一些点,还允许你指定是否包含正确的端点:

>>> np.linspace(0,1,11)
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1. ])
>>> np.linspace(0,1,10,endpoint=False)
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9])

如果你真的想使用浮点步长值,可以使用numpy.arange:

>>> import numpy as np
>>> np.arange(0.0, 1.0, 0.1)
array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9])

但是浮点舍入错误会导致问题。下面是一个简单的例子,舍入错误导致range生成一个长度为4的数组,而它应该只生成3个数字:

>>> numpy.arange(1, 1.3, 0.1)
array([1. , 1.1, 1.2, 1.3])

这一行代码不会使代码变得混乱。step参数的符号很重要。

def frange(start, stop, step):
    return [x*step+start for x in range(0,round(abs((stop-start)/step)+0.5001),
        int((stop-start)/step<0)*-2+1)]

法兰(开始、停止、精度)

def frange(a,b,i):
    p = 10**i
    sr = a*p
    er = (b*p) + 1
    p = float(p)
    return map(lambda x: x/p, xrange(sr,er))

In >frange(-1,1,1)

Out>[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

为了精品的完整性,一个功能性的解决方案:

def frange(a,b,s):
  return [] if s > 0 and a > b or s < 0 and a < b or s==0 else [a]+frange(a+s,b,s)