我正在尝试制作散点图,并从列表中标注不同数字的数据点。 举个例子,我想画出y和x,并用n中对应的数字标注。

y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]
ax = fig.add_subplot(111)
ax1.scatter(z, y, fmt='o')

什么好主意吗?


当前回答

对于有限的值集,matplotlib很好。但是当你有很多值时,工具提示开始与其他数据点重叠。但由于空间有限,你不能忽略这些值。因此,最好是缩小或放大。

使用图

import plotly.express as px
import pandas as pd

df = px.data.tips()

df = px.data.gapminder().query("year==2007 and continent=='Americas'")


fig = px.scatter(df, x="gdpPercap", y="lifeExp", text="country", log_x=True, size_max=100, color="lifeExp")
fig.update_traces(textposition='top center')
fig.update_layout(title_text='Life Expectency', title_x=0.5)
fig.show()

其他回答

对于有限的值集,matplotlib很好。但是当你有很多值时,工具提示开始与其他数据点重叠。但由于空间有限,你不能忽略这些值。因此,最好是缩小或放大。

使用图

import plotly.express as px
import pandas as pd

df = px.data.tips()

df = px.data.gapminder().query("year==2007 and continent=='Americas'")


fig = px.scatter(df, x="gdpPercap", y="lifeExp", text="country", log_x=True, size_max=100, color="lifeExp")
fig.update_traces(textposition='top center')
fig.update_layout(title_text='Life Expectency', title_x=0.5)
fig.show()

在matplotlib 2.0之前的版本中,ax。在没有标记的情况下,对文本进行分散绘制是不必要的。在2.0版本中,您将需要ax。为文本设置适当的范围和标记。

import matplotlib.pyplot as plt
y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]

fig, ax = plt.subplots()

for i, txt in enumerate(n):
    ax.annotate(txt, (z[i], y[i]))

在这个链接中,你可以找到一个3d的例子。

如果有人试图将上述解决方案应用于.scatter()而不是.subplot(),

我尝试运行以下代码

import matplotlib.pyplot as plt
y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]

fig, ax = plt.scatter(z, y)

for i, txt in enumerate(n):
    ax.annotate(txt, (z[i], y[i]))

但是遇到了“不能解包不可迭代的PathCollection对象”的错误,错误具体指向代码线图,ax = plt。散射(z, y)

我最终用下面的代码解决了这个错误

import matplotlib.pyplot as plt
plt.scatter(z, y)

for i, txt in enumerate(n):
    plt.annotate(txt, (z[i], y[i]))

我没想到.scatter()和.subplot()之间有区别 我早该知道的。

当您需要在不同的时间单独注释时(我的意思是,不是在单个for循环中),这可能很有用。

ax = plt.gca()
ax.annotate('your_lable', (x,y)) 

其中x和y是你的目标坐标类型是float/int。

Python 3.6 +:

coordinates = [('a',1,2), ('b',3,4), ('c',5,6)]
for x in coordinates: plt.annotate(x[0], (x[1], x[2]))