我正在尝试制作散点图,并从列表中标注不同数字的数据点。 举个例子,我想画出y和x,并用n中对应的数字标注。

y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]
ax = fig.add_subplot(111)
ax1.scatter(z, y, fmt='o')

什么好主意吗?


当前回答

作为一个使用列表理解和numpy的一行程序:

(ax。注释(x [0] (x[1],[2]))的x np.array ([n, z, y]) .T]

设置与Rutger的答案相同。

其他回答

我不知道任何绘图方法,它接受数组或列表,但你可以使用注释(),而迭代在n的值。

import matplotlib.pyplot as plt
y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]

fig, ax = plt.subplots()
ax.scatter(z, y)

for i, txt in enumerate(n):
    ax.annotate(txt, (z[i], y[i]))

注释()有很多格式化选项,请参阅matplotlib网站:

我想补充的是,您甚至可以使用箭头/文本框来注释标签。我的意思是:

import random
import matplotlib.pyplot as plt


y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]

fig, ax = plt.subplots()
ax.scatter(z, y)

ax.annotate(n[0], (z[0], y[0]), xytext=(z[0]+0.05, y[0]+0.3), 
    arrowprops=dict(facecolor='red', shrink=0.05))

ax.annotate(n[1], (z[1], y[1]), xytext=(z[1]-0.05, y[1]-0.3), 
    arrowprops = dict(  arrowstyle="->",
                        connectionstyle="angle3,angleA=0,angleB=-90"))

ax.annotate(n[2], (z[2], y[2]), xytext=(z[2]-0.05, y[2]-0.3), 
    arrowprops = dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1))

ax.annotate(n[3], (z[3], y[3]), xytext=(z[3]+0.05, y[3]-0.2), 
    arrowprops = dict(arrowstyle="fancy"))

ax.annotate(n[4], (z[4], y[4]), xytext=(z[4]-0.1, y[4]-0.2),
    bbox=dict(boxstyle="round", alpha=0.1), 
    arrowprops = dict(arrowstyle="simple"))

plt.show()

这将生成以下图形:

在matplotlib 2.0之前的版本中,ax。在没有标记的情况下,对文本进行分散绘制是不必要的。在2.0版本中,您将需要ax。为文本设置适当的范围和标记。

import matplotlib.pyplot as plt
y = [2.56422, 3.77284, 3.52623, 3.51468, 3.02199]
z = [0.15, 0.3, 0.45, 0.6, 0.75]
n = [58, 651, 393, 203, 123]

fig, ax = plt.subplots()

for i, txt in enumerate(n):
    ax.annotate(txt, (z[i], y[i]))

在这个链接中,你可以找到一个3d的例子。

Python 3.6 +:

coordinates = [('a',1,2), ('b',3,4), ('c',5,6)]
for x in coordinates: plt.annotate(x[0], (x[1], x[2]))

您也可以使用pyplot。文本(见这里)。

def plot_embeddings(M_reduced, word2Ind, words):
    """ 
        Plot in a scatterplot the embeddings of the words specified in the list "words".
        Include a label next to each point.
    """
    for word in words:
        x, y = M_reduced[word2Ind[word]]
        plt.scatter(x, y, marker='x', color='red')
        plt.text(x+.03, y+.03, word, fontsize=9)
    plt.show()

M_reduced_plot_test = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0, 0]])
word2Ind_plot_test = {'test1': 0, 'test2': 1, 'test3': 2, 'test4': 3, 'test5': 4}
words = ['test1', 'test2', 'test3', 'test4', 'test5']
plot_embeddings(M_reduced_plot_test, word2Ind_plot_test, words)