我想在PostgreSQL中随机选择行,我尝试了这个:
select * from table where random() < 0.01;
但也有人建议:
select * from table order by random() limit 1000;
我有一个非常大的表,有5亿行,我希望它是快速的。
哪种方法更好?有什么不同?选择随机行最好的方法是什么?
我想在PostgreSQL中随机选择行,我尝试了这个:
select * from table where random() < 0.01;
但也有人建议:
select * from table order by random() limit 1000;
我有一个非常大的表,有5亿行,我希望它是快速的。
哪种方法更好?有什么不同?选择随机行最好的方法是什么?
当前回答
从PostgreSQL 9.5开始,有一个新的语法专门用于从表中获取随机元素:
SELECT * FROM mytable TABLESAMPLE SYSTEM (5);
这个例子将给出mytable中5%的元素。
有关文档的更多说明:http://www.postgresql.org/docs/current/static/sql-select.html
其他回答
从PostgreSQL 9.5开始,有一个新的语法专门用于从表中获取随机元素:
SELECT * FROM mytable TABLESAMPLE SYSTEM (5);
这个例子将给出mytable中5%的元素。
有关文档的更多说明:http://www.postgresql.org/docs/current/static/sql-select.html
ORDER BY的那个会比较慢。
Select * from table where random() < 0.01;逐条记录,然后决定是否随机过滤。这将是O(N)因为它只需要检查每个记录一次。
Select * from table order by random() limit 1000;将对整个表进行排序,然后选择前1000个。除去幕后的巫毒魔法,顺序是O(N * log N)。
random() < 0.01的缺点是,输出记录的数量是可变的。
注意,有一种比随机排序更好的方法来打乱一组数据:Fisher-Yates Shuffle,它在O(N)中运行。不过,在SQL中实现shuffle听起来很有挑战性。
这是一个对我有用的决定。我想这很容易理解和执行。
SELECT
field_1,
field_2,
field_2,
random() as ordering
FROM
big_table
WHERE
some_conditions
ORDER BY
ordering
LIMIT 1000;
快速的方式
根据您的规格(以及评论中的其他信息),
您有一个数字ID列(整数),只有很少(或中等数量)的间隙。 显然没有或很少有写操作。 您的ID列必须被索引!主键很有用。
下面的查询不需要对大表进行顺序扫描,只需要进行索引扫描。
首先,获取主查询的估计值:
SELECT count(*) AS ct -- optional
, min(id) AS min_id
, max(id) AS max_id
, max(id) - min(id) AS id_span
FROM big;
唯一可能昂贵的部分是count(*)(对于巨大的表)。考虑到上述规格,您不需要它。用一个估计来代替完整的计数就可以了,几乎不需要任何成本:
SELECT (reltuples / relpages * (pg_relation_size(oid) / 8192))::bigint AS ct
FROM pg_class
WHERE oid = 'big'::regclass; -- your table name
详细解释:
在PostgreSQL中快速发现表的行数
只要ct不比id_span小很多,查询的性能就优于其他方法。
WITH params AS (
SELECT 1 AS min_id -- minimum id <= current min id
, 5100000 AS id_span -- rounded up. (max_id - min_id + buffer)
)
SELECT *
FROM (
SELECT p.min_id + trunc(random() * p.id_span)::integer AS id
FROM params p
, generate_series(1, 1100) g -- 1000 + buffer
GROUP BY 1 -- trim duplicates
) r
JOIN big USING (id)
LIMIT 1000; -- trim surplus
在id空间中生成随机数。您有“很少的空白”,因此将10%(足以轻松覆盖空白)添加到要检索的行数。 每个id都可以随机选择多次(尽管对于大id空格来说不太可能),因此将生成的数字分组(或使用DISTINCT)。 将id连接到大表中。这应该是非常快的索引到位。 最后,修剪多余的id,没有被dupes和gap吃掉。每一行都有完全相等的机会被选中。
短的版本
您可以简化这个查询。上面查询中的CTE仅用于教育目的:
SELECT *
FROM (
SELECT DISTINCT 1 + trunc(random() * 5100000)::integer AS id
FROM generate_series(1, 1100) g
) r
JOIN big USING (id)
LIMIT 1000;
使用rCTE进行细化
特别是当你对差距和估计不太确定的时候。
WITH RECURSIVE random_pick AS (
SELECT *
FROM (
SELECT 1 + trunc(random() * 5100000)::int AS id
FROM generate_series(1, 1030) -- 1000 + few percent - adapt to your needs
LIMIT 1030 -- hint for query planner
) r
JOIN big b USING (id) -- eliminate miss
UNION -- eliminate dupe
SELECT b.*
FROM (
SELECT 1 + trunc(random() * 5100000)::int AS id
FROM random_pick r -- plus 3 percent - adapt to your needs
LIMIT 999 -- less than 1000, hint for query planner
) r
JOIN big b USING (id) -- eliminate miss
)
TABLE random_pick
LIMIT 1000; -- actual limit
我们可以在基本查询中使用较小的剩余。如果有太多的间隙,所以我们在第一次迭代中没有找到足够的行,rCTE将继续使用递归项进行迭代。我们仍然需要相对较少的ID空间间隙,否则递归可能会在达到极限之前耗尽——或者我们必须从一个足够大的缓冲区开始,这与优化性能的目的相矛盾。
在rCTE中,由UNION消除重复。
外部LIMIT使CTE停止,只要我们有足够的行。
这个查询是精心起草的,使用可用的索引,生成实际上是随机的行,直到达到限制才停止(除非递归耗尽)。如果你要重写它,这里会有很多陷阱。
包装成函数
重复使用相同的表,不同的参数:
CREATE OR REPLACE FUNCTION f_random_sample(_limit int = 1000, _gaps real = 1.03)
RETURNS SETOF big
LANGUAGE plpgsql VOLATILE ROWS 1000 AS
$func$
DECLARE
_surplus int := _limit * _gaps;
_estimate int := ( -- get current estimate from system
SELECT (reltuples / relpages * (pg_relation_size(oid) / 8192))::bigint
FROM pg_class
WHERE oid = 'big'::regclass);
BEGIN
RETURN QUERY
WITH RECURSIVE random_pick AS (
SELECT *
FROM (
SELECT 1 + trunc(random() * _estimate)::int
FROM generate_series(1, _surplus) g
LIMIT _surplus -- hint for query planner
) r (id)
JOIN big USING (id) -- eliminate misses
UNION -- eliminate dupes
SELECT *
FROM (
SELECT 1 + trunc(random() * _estimate)::int
FROM random_pick -- just to make it recursive
LIMIT _limit -- hint for query planner
) r (id)
JOIN big USING (id) -- eliminate misses
)
TABLE random_pick
LIMIT _limit;
END
$func$;
电话:
SELECT * FROM f_random_sample();
SELECT * FROM f_random_sample(500, 1.05);
泛型函数
我们可以让这个泛型适用于任何具有唯一整数列的表(通常是PK):将表作为多态类型传递,并(可选地)传递PK列的名称,并使用EXECUTE:
CREATE OR REPLACE FUNCTION f_random_sample(_tbl_type anyelement
, _id text = 'id'
, _limit int = 1000
, _gaps real = 1.03)
RETURNS SETOF anyelement
LANGUAGE plpgsql VOLATILE ROWS 1000 AS
$func$
DECLARE
-- safe syntax with schema & quotes where needed
_tbl text := pg_typeof(_tbl_type)::text;
_estimate int := (SELECT (reltuples / relpages
* (pg_relation_size(oid) / 8192))::bigint
FROM pg_class -- get current estimate from system
WHERE oid = _tbl::regclass);
BEGIN
RETURN QUERY EXECUTE format(
$$
WITH RECURSIVE random_pick AS (
SELECT *
FROM (
SELECT 1 + trunc(random() * $1)::int
FROM generate_series(1, $2) g
LIMIT $2 -- hint for query planner
) r(%2$I)
JOIN %1$s USING (%2$I) -- eliminate misses
UNION -- eliminate dupes
SELECT *
FROM (
SELECT 1 + trunc(random() * $1)::int
FROM random_pick -- just to make it recursive
LIMIT $3 -- hint for query planner
) r(%2$I)
JOIN %1$s USING (%2$I) -- eliminate misses
)
TABLE random_pick
LIMIT $3;
$$
, _tbl, _id
)
USING _estimate -- $1
, (_limit * _gaps)::int -- $2 ("surplus")
, _limit -- $3
;
END
$func$;
调用默认值(重要!):
SELECT * FROM f_random_sample(null::big); --!
或者更具体地说:
SELECT * FROM f_random_sample(null::"my_TABLE", 'oDD ID', 666, 1.15);
性能与静态版本基本相同。
相关:
重构一个PL/pgSQL函数以返回各种SELECT查询的输出-章节“各种完整的表类型” 从PostgreSQL函数返回SETOF行 Format()用于EXECUTE? 在触发器函数中插入动态表名
这对于SQL注入是安全的。看到的:
表名作为PostgreSQL函数参数 Postgres函数中的SQL注入vs准备好的查询
可能的替代方法
如果你的需求允许重复调用的相同集(我们说的是重复调用)考虑一个物化视图。执行上述查询一次,并将结果写入一个表。用户以闪电般的速度获得准随机选择。每隔一段时间或你选择的事件刷新你的随机选择。
Postgres 9.5引入了TABLESAMPLE系统(n)
其中n是百分比。手册:
伯努利和系统抽样方法各接受一个单一 参数,它是要采样的表的分数,表示为a 0到100之间的百分比。这个参数可以是任何实值表达式。
大胆强调我的。它非常快,但结果不是完全随机的。再看一下手册:
SYSTEM方法明显比BERNOULLI方法快 当指定小的抽样百分比时,但它可能返回一个 由于聚类效应,表中样本的随机程度较低。
返回的行数变化很大。在我们的例子中,要获取大约1000行:
SELECT * FROM big TABLESAMPLE SYSTEM ((1000 * 100) / 5100000.0);
相关:
在PostgreSQL中快速发现表的行数
或者安装额外的模块tsm_system_rows,以准确获取所请求的行数(如果有足够的行),并允许更方便的语法:
SELECT * FROM big TABLESAMPLE SYSTEM_ROWS(1000);
详情见埃文的回答。
但这仍然不是完全随机的。
我认为在postgreSQL中最好和最简单的方法是:
SELECT * FROM tableName ORDER BY random() LIMIT 1