Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

列表中的无限递归

>>> a = [1,2]
>>> a.append(a)
>>> a
[1, 2, [...]]
>>> a[2]
[1, 2, [...]]
>>> a[2][2][2][2][2][2][2][2][2] == a
True

其他回答

条件赋值

x = 3 if (y == 1) else 2

正如它听起来的那样:“如果y是1,则赋3给x,否则赋2给x”。注意,括号不是必需的,但是为了可读性,我喜欢它们。如果你有更复杂的东西,你也可以把它串起来:

x = 3 if (y == 1) else 2 if (y == -1) else 1

虽然在某种程度上,这有点太过分了。

注意,你可以使用if…任何表达式中的Else。例如:

(func1 if y == 1 else func2)(arg1, arg2) 

这里,如果y = 1调用func1,否则调用func2。在这两种情况下,对应的函数将调用参数arg1和arg2。

类似地,以下也成立:

x = (class1 if y == 1 else class2)(arg1, arg2)

其中class1和class2是两个类。

Namedtuple是一个元组

>>> node = namedtuple('node', "a b")
>>> node(1,2) + node(5,6)
(1, 2, 5, 6)
>>> (node(1,2), node(5,6))
(node(a=1, b=2), node(a=5, b=6))
>>> 

更多的实验来回应评论:

>>> from collections import namedtuple
>>> from operator import *
>>> mytuple = namedtuple('A', "a b")
>>> yourtuple = namedtuple('Z', "x y")
>>> mytuple(1,2) + yourtuple(5,6)
(1, 2, 5, 6)
>>> q = [mytuple(1,2), yourtuple(5,6)]
>>> q
[A(a=1, b=2), Z(x=5, y=6)]
>>> reduce(operator.__add__, q)
(1, 2, 5, 6)

namedtuple是tuple的一个有趣的子类型。

将值发送到生成器函数。例如有这样的函数:

def mygen():
    """Yield 5 until something else is passed back via send()"""
    a = 5
    while True:
        f = (yield a) #yield a and possibly get f in return
        if f is not None: 
            a = f  #store the new value

您可以:

>>> g = mygen()
>>> g.next()
5
>>> g.next()
5
>>> g.send(7)  #we send this back to the generator
7
>>> g.next() #now it will yield 7 until we send something else
7

链接比较操作符:

>>> x = 5
>>> 1 < x < 10
True
>>> 10 < x < 20 
False
>>> x < 10 < x*10 < 100
True
>>> 10 > x <= 9
True
>>> 5 == x > 4
True

如果你认为它在做1 < x,结果是True,然后比较True < 10,这也是True,那么不,这真的不是发生的事情(见最后一个例子)。它实际上转化为1 < x和x < 10,以及x < 10和10 < x*10和x*10 < 100,但是类型更少,每个项只计算一次。

一级函数

这并不是一个隐藏的特性,但函数是第一类对象这一事实非常棒。你可以像传递其他变量一样传递它们。

>>> def jim(phrase):
...   return 'Jim says, "%s".' % phrase
>>> def say_something(person, phrase):
...   print person(phrase)

>>> say_something(jim, 'hey guys')
'Jim says, "hey guys".'