Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

重新加载模块可以实现“实时编码”风格。但是类实例不更新。以下是原因,以及如何解决这个问题。记住,所有东西,是的,所有东西都是一个对象。

>>> from a_package import a_module
>>> cls = a_module.SomeClass
>>> obj = cls()
>>> obj.method()
(old method output)

现在更改a_module.py中的方法,并希望更新对象。

>>> reload(a_module)
>>> a_module.SomeClass is cls
False # Because it just got freshly created by reload.
>>> obj.method()
(old method output)

这里有一种更新方法(但考虑使用剪刀运行):

>>> obj.__class__ is cls
True # it's the old class object
>>> obj.__class__ = a_module.SomeClass # pick up the new class
>>> obj.method()
(new method output)

这是“剪刀式运行”,因为对象的内部状态可能与新类所期望的不同。这适用于非常简单的情况,但除此之外,pickle是您的朋友。尽管如此,理解为什么这是有效的仍然是有帮助的。

其他回答

描述符

它们是一大堆核心Python特性背后的魔力。

当您使用点访问来查找成员(例如x.y)时,Python首先在实例字典中查找成员。如果没有找到,则在类字典中查找。如果它在类字典中找到它,并且对象实现了描述符协议,而不是仅仅返回它,Python就会执行它。描述符是任何实现__get__、__set__或__delete__方法的类。

下面是如何使用描述符实现自己的(只读)属性版本:

class Property(object):
    def __init__(self, fget):
        self.fget = fget

    def __get__(self, obj, type):
        if obj is None:
            return self
        return self.fget(obj)

你可以像使用内置属性()一样使用它:

class MyClass(object):
    @Property
    def foo(self):
        return "Foo!"

在Python中,描述符用于实现属性、绑定方法、静态方法、类方法和插槽等。理解它们可以很容易地理解为什么以前看起来像Python“怪癖”的很多东西是这样的。

Raymond Hettinger有一个很棒的教程,在描述它们方面比我做得更好。

scanner类。http://code.activestate.com/recipes/457664-hidden-scanner-functionality-in-re-module/

可以使用属性使类接口更加严格。

class C(object):
    def __init__(self, foo, bar):
        self.foo = foo # read-write property
        self.bar = bar # simple attribute

    def _set_foo(self, value):
        self._foo = value

    def _get_foo(self):
        return self._foo

    def _del_foo(self):
        del self._foo

    # any of fget, fset, fdel and doc are optional,
    # so you can make a write-only and/or delete-only property.
    foo = property(fget = _get_foo, fset = _set_foo,
                   fdel = _del_foo, doc = 'Hello, I am foo!')

class D(C):
    def _get_foo(self):
        return self._foo * 2

    def _set_foo(self, value):
        self._foo = value / 2

    foo = property(fget = _get_foo, fset = _set_foo,
                   fdel = C.foo.fdel, doc = C.foo.__doc__)

在Python 2.6和3.0中:

class C(object):
    def __init__(self, foo, bar):
        self.foo = foo # read-write property
        self.bar = bar # simple attribute

    @property
    def foo(self):
        '''Hello, I am foo!'''

        return self._foo

    @foo.setter
    def foo(self, value):
        self._foo = value

    @foo.deleter
    def foo(self):
        del self._foo

class D(C):
    @C.foo.getter
    def foo(self):
        return self._foo * 2

    @foo.setter
    def foo(self, value):
        self._foo = value / 2

要了解属性如何工作的更多信息,请参阅描述符。

is_ok() and "Yes" or "No"

使用关键字参数作为赋值

有时需要根据一个或多个参数构建一系列函数。然而,这很容易导致闭包都引用相同的对象和值:

funcs = [] 
for k in range(10):
     funcs.append( lambda: k)

>>> funcs[0]()
9
>>> funcs[7]()
9

可以通过将lambda表达式转换为仅依赖其参数的函数来避免这种行为。关键字参数存储绑定到它的当前值。函数调用不需要改变:

funcs = [] 
for k in range(10):
     funcs.append( lambda k = k: k)

>>> funcs[0]()
0
>>> funcs[7]()
7