Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

对迭代器的多个引用

你可以使用列表乘法创建对同一个迭代器的多个引用:

>>> i = (1,2,3,4,5,6,7,8,9,10) # or any iterable object
>>> iterators = [iter(i)] * 2
>>> iterators[0].next()
1
>>> iterators[1].next()
2
>>> iterators[0].next()
3

这可以用来将一个可迭代对象分组成块,例如,就像这个来自itertools文档的例子

def grouper(n, iterable, fillvalue=None):
    "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
    args = [iter(iterable)] * n
    return izip_longest(fillvalue=fillvalue, *args)

其他回答

设置/ frozenset

可能一个容易被忽略的python内置程序是“set/frozenset”。

当你有一个像这样的列表[1,2,1,1,2,3,4]并且只想要像[1,2,3,4]这样的唯一性时很有用。

使用set()这就是你得到的结果:

>>> x = [1,2,1,1,2,3,4] 
>>> 
>>> set(x) 
set([1, 2, 3, 4]) 
>>>
>>> for i in set(x):
...     print i
...
1
2
3
4

当然,要得到列表中唯一的个数:

>>> len(set([1,2,1,1,2,3,4]))
4

你也可以使用set(). is子集()来判断一个列表是否是另一个列表的子集:

>>> set([1,2,3,4]).issubset([0,1,2,3,4,5])
True

从Python 2.7和3.0开始,你可以使用花括号来创建一个集合:

myset = {1,2,3,4}

以及集合理解:

{x for x in stuff}

详情如下: http://docs.python.org/library/stdtypes.html#set

如果在函数中使用exec,变量查找规则将发生巨大变化。闭包不再可能,但Python允许在函数中使用任意标识符。这为您提供了一个“可修改的locals()”,并可用于星型导入标识符。缺点是,它会使每次查找都变慢,因为变量最终会在字典中而不是在帧中的槽中结束:

>>> def f():
...  exec "a = 42"
...  return a
... 
>>> def g():
...  a = 42
...  return a
... 
>>> import dis
>>> dis.dis(f)
  2           0 LOAD_CONST               1 ('a = 42')
              3 LOAD_CONST               0 (None)
              6 DUP_TOP             
              7 EXEC_STMT           

  3           8 LOAD_NAME                0 (a)
             11 RETURN_VALUE        
>>> dis.dis(g)
  2           0 LOAD_CONST               1 (42)
              3 STORE_FAST               0 (a)

  3           6 LOAD_FAST                0 (a)
              9 RETURN_VALUE        

函数参数解包

可以使用*和**将列表或字典解包为函数参数。

例如:

def draw_point(x, y):
    # do some magic

point_foo = (3, 4)
point_bar = {'y': 3, 'x': 2}

draw_point(*point_foo)
draw_point(**point_bar)

非常有用的快捷方式,因为列表、元组和字典被广泛用作容器。

__slots__是一种节省内存的好方法,但是很难得到对象值的字典。想象下面这个物体:

class Point(object):
    __slots__ = ('x', 'y')

这个对象显然有两个属性。现在我们可以创建它的一个实例,并以这样的方式构建它的字典:

>>> p = Point()
>>> p.x = 3
>>> p.y = 5
>>> dict((k, getattr(p, k)) for k in p.__slots__)
{'y': 5, 'x': 3}

然而,如果point被子类化并且添加了新的槽,这将不起作用。但是Python会自动实现__reduce_ex__来帮助复制模块。这可以被滥用来获得价值的字典:

>>> p.__reduce_ex__(2)[2][1]
{'y': 5, 'x': 3}

从2.5开始字典有一个特殊的方法__missing__,用于调用缺少的项:

>>> class MyDict(dict):
...  def __missing__(self, key):
...   self[key] = rv = []
...   return rv
... 
>>> m = MyDict()
>>> m["foo"].append(1)
>>> m["foo"].append(2)
>>> dict(m)
{'foo': [1, 2]}

在集合中还有一个名为defaultdict的dict子类,它做了几乎相同的事情,但对于不存在的项调用了一个不带参数的函数:

>>> from collections import defaultdict
>>> m = defaultdict(list)
>>> m["foo"].append(1)
>>> m["foo"].append(2)
>>> dict(m)
{'foo': [1, 2]}

我建议将这些字典转换为常规字典,然后再将它们传递给不需要此类子类的函数。许多代码使用d[a_key]并捕获KeyErrors来检查是否存在一个项,这将向dict添加一个新项。