Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

类作为一级对象(通过动态类定义显示)

还要注意闭包的使用。如果这个例子看起来是解决问题的“正确”方法,请仔细考虑……好几次:)

def makeMeANewClass(parent, value):
  class IAmAnObjectToo(parent):
    def theValue(self):
      return value
  return IAmAnObjectToo

Klass = makeMeANewClass(str, "fred")
o = Klass()
print isinstance(o, str)  # => True
print o.theValue()        # => fred

其他回答

Mapreduce使用map和reduce函数

这样创建一个简单的sumproduct:

def sumprod(x,y):
    return reduce(lambda a,b:a+b, map(lambda a, b: a*b,x,y))

例子:

In [2]: sumprod([1,2,3],[4,5,6])
Out[2]: 32

使用不同的起始索引进行枚举

enumerate在这个答案中已经部分涉及了,但最近我发现了enumerate一个更隐藏的特性,我认为值得单独发表,而不仅仅是评论。

从Python 2.6开始,你可以在第二个参数中指定要枚举的起始索引:

>>> l = ["spam", "ham", "eggs"]
>>> list(enumerate(l))
>>> [(0, "spam"), (1, "ham"), (2, "eggs")]
>>> list(enumerate(l, 1))
>>> [(1, "spam"), (2, "ham"), (3, "eggs")]

我发现它非常有用的一个地方是当我枚举对称矩阵的元素时。由于矩阵是对称的,我可以通过只在上三角形上迭代来节省时间,但在这种情况下,我必须在内部for循环中使用不同的起始索引来正确跟踪行和列的索引:

for ri, row in enumerate(matrix):
    for ci, column in enumerate(matrix[ri:], ri):
        # ci now refers to the proper column index

奇怪的是,enumerate的这种行为在help(enumerate)中没有记录,只有在线文档中有记录。

下面是我在调试类型错误时使用的一个有用的函数

def typePrint(object):
    print(str(object) + " - (" + str(type(object)) + ")")

例如,它只是打印输入后跟类型

>>> a = 101
>>> typePrint(a)
    101 - (<type 'int'>)

Re-raising例外:

# Python 2 syntax
try:
    some_operation()
except SomeError, e:
    if is_fatal(e):
        raise
    handle_nonfatal(e)

# Python 3 syntax
try:
    some_operation()
except SomeError as e:
    if is_fatal(e):
        raise
    handle_nonfatal(e)

错误处理程序中不带参数的“raise”语句告诉Python在原始回溯完整的情况下重新引发异常,允许你说“哦,对不起,对不起,我不是有意捕捉那个,对不起,对不起。”

如果你想打印、存储或修改原始的traceback,你可以使用sys.exc_info()来获取它,并且像Python一样使用'traceback'模块来打印它。

for line in open('foo'):
    print(line)

这相当于(但更好):

f = open('foo', 'r')
for line in f.readlines():
   print(line)
f.close()