Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

您可以用元类重写类的mro

>>> class A(object):
...     def a_method(self):
...         print("A")
... 
>>> class B(object):
...     def b_method(self):
...         print("B")
... 
>>> class MROMagicMeta(type):
...     def mro(cls):
...         return (cls, B, object)
... 
>>> class C(A, metaclass=MROMagicMeta):
...     def c_method(self):
...         print("C")
... 
>>> cls = C()
>>> cls.c_method()
C
>>> cls.a_method()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'C' object has no attribute 'a_method'
>>> cls.b_method()
B
>>> type(cls).__bases__
(<class '__main__.A'>,)
>>> type(cls).__mro__
(<class '__main__.C'>, <class '__main__.B'>, <class 'object'>)

藏起来可能是有原因的。:)

其他回答

不是很隐藏,但是函数有属性:

def doNothing():
    pass

doNothing.monkeys = 4
print doNothing.monkeys
4

commands.getoutput

如果你想获得直接输出到stdout或stderr的函数的输出,就像os的情况一样。系统命令。Getoutput来拯救。整个模块都非常棒。

>>> print commands.getoutput('ls')
myFile1.txt    myFile2.txt    myFile3.txt    myFile4.txt    myFile5.txt
myFile6.txt    myFile7.txt    myFile8.txt    myFile9.txt    myFile10.txt
myFile11.txt   myFile12.txt   myFile13.txt   myFile14.txt   module.py

模块导出命名空间中的EVERYTHING

包括从其他模块导入的名称!

# this is "answer42.py"
from operator import *
from inspect  import *

现在测试模块中可导入的内容。

>>> import answer42
>>> answer42.__dict__.keys()
['gt', 'imul', 'ge', 'setslice', 'ArgInfo', 'getfile', 'isCallable', 'getsourcelines', 'CO_OPTIMIZED', 'le', 're', 'isgenerator', 'ArgSpec', 'imp', 'lt', 'delslice', 'BlockFinder', 'getargspec', 'currentframe', 'CO_NOFREE', 'namedtuple', 'rshift', 'string', 'getframeinfo', '__file__', 'strseq', 'iconcat', 'getmro', 'mod', 'getcallargs', 'isub', 'getouterframes', 'isdatadescriptor', 'modulesbyfile', 'setitem', 'truth', 'Attribute', 'div', 'CO_NESTED', 'ixor', 'getargvalues', 'ismemberdescriptor', 'getsource', 'isMappingType', 'eq', 'index', 'xor', 'sub', 'getcomments', 'neg', 'getslice', 'isframe', '__builtins__', 'abs', 'getmembers', 'mul', 'getclasstree', 'irepeat', 'is_', 'getitem', 'indexOf', 'Traceback', 'findsource', 'ModuleInfo', 'ipow', 'TPFLAGS_IS_ABSTRACT', 'or_', 'joinseq', 'is_not', 'itruediv', 'getsourcefile', 'dis', 'os', 'iand', 'countOf', 'getinnerframes', 'pow', 'pos', 'and_', 'lshift', '__name__', 'sequenceIncludes', 'isabstract', 'isbuiltin', 'invert', 'contains', 'add', 'isSequenceType', 'irshift', 'types', 'tokenize', 'isfunction', 'not_', 'istraceback', 'getmoduleinfo', 'isgeneratorfunction', 'getargs', 'CO_GENERATOR', 'cleandoc', 'classify_class_attrs', 'EndOfBlock', 'walktree', '__doc__', 'getmodule', 'isNumberType', 'ilshift', 'ismethod', 'ifloordiv', 'formatargvalues', 'indentsize', 'getmodulename', 'inv', 'Arguments', 'iscode', 'CO_NEWLOCALS', 'formatargspec', 'iadd', 'getlineno', 'imod', 'CO_VARKEYWORDS', 'ne', 'idiv', '__package__', 'CO_VARARGS', 'attrgetter', 'methodcaller', 'truediv', 'repeat', 'trace', 'isclass', 'ior', 'ismethoddescriptor', 'sys', 'isroutine', 'delitem', 'stack', 'concat', 'getdoc', 'getabsfile', 'ismodule', 'linecache', 'floordiv', 'isgetsetdescriptor', 'itemgetter', 'getblock']
>>> from answer42 import getmembers
>>> getmembers
<function getmembers at 0xb74b2924>
>>> 

这是一个不从x import *并定义__all__ =的好理由。

插入与追加

不是特稿,但可能会很有趣

假设您想要在列表中插入一些数据,然后反转它。最简单的方法是

count = 10 ** 5
nums = []
for x in range(count):
    nums.append(x)
nums.reverse()

然后你会想:把数字从最开始插入怎么样?所以:

count = 10 ** 5 
nums = [] 
for x in range(count):
    nums.insert(0, x)

但它却慢了100倍!如果我们设置count = 10 ** 6,它将慢1000倍;这是因为插入是O(n²),而追加是O(n)。

造成这种差异的原因是insert每次调用时都必须移动列表中的每个元素;Append只是在列表的末尾添加元素(有时它必须重新分配所有元素,但它仍然更快)

for line in open('foo'):
    print(line)

这相当于(但更好):

f = open('foo', 'r')
for line in f.readlines():
   print(line)
f.close()