似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
当前回答
通过比较下面的解决方案与使用cumsum of numpy的解决方案,这个解决方案几乎花费了一半的时间。这是因为它不需要遍历整个数组来做cumsum,然后做所有的减法。此外,如果数组很大且数量很大(可能溢出),cumsum可能是“危险的”。当然,这里也存在危险,但至少我们只把重要的数字加在一起。
def moving_average(array_numbers, n):
if n > len(array_numbers):
return []
temp_sum = sum(array_numbers[:n])
averages = [temp_sum / float(n)]
for first_index, item in enumerate(array_numbers[n:]):
temp_sum += item - array_numbers[first_index]
averages.append(temp_sum / float(n))
return averages
其他回答
如果你想仔细考虑边缘条件(只从边缘的可用元素计算平均值),下面的函数可以解决这个问题。
import numpy as np
def running_mean(x, N):
out = np.zeros_like(x, dtype=np.float64)
dim_len = x.shape[0]
for i in range(dim_len):
if N%2 == 0:
a, b = i - (N-1)//2, i + (N-1)//2 + 2
else:
a, b = i - (N-1)//2, i + (N-1)//2 + 1
#cap indices to min and max indices
a = max(0, a)
b = min(dim_len, b)
out[i] = np.mean(x[a:b])
return out
>>> running_mean(np.array([1,2,3,4]), 2)
array([1.5, 2.5, 3.5, 4. ])
>>> running_mean(np.array([1,2,3,4]), 3)
array([1.5, 2. , 3. , 3.5])
for i in range(len(Data)):
Data[i, 1] = Data[i-lookback:i, 0].sum() / lookback
试试这段代码。我认为这样更简单,也能达到目的。 回望是移动平均线的窗口。
在Data[i-lookback:i, 0].sum()中,我放了0来指代数据集的第一列,但如果你有多个列,你可以放任何你喜欢的列。
您也可以编写自己的Python C扩展。
这当然不是最简单的方法,但与使用np相比,这将使您运行得更快,内存效率更高。堆积:作为建筑块的堆积
// moving_average.c
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <Python.h>
#include <numpy/arrayobject.h>
static PyObject *moving_average(PyObject *self, PyObject *args) {
PyObject *input;
int64_t window_size;
PyArg_ParseTuple(args, "Ol", &input, &window_size);
if (PyErr_Occurred()) return NULL;
if (!PyArray_Check(input) || !PyArray_ISNUMBER((PyArrayObject *)input)) {
PyErr_SetString(PyExc_TypeError, "First argument must be a numpy array with numeric dtype");
return NULL;
}
int64_t input_size = PyObject_Size(input);
double *input_data;
if (PyArray_AsCArray(&input, &input_data, (npy_intp[]){ [0] = input_size }, 1, PyArray_DescrFromType(NPY_DOUBLE)) != 0) {
PyErr_SetString(PyExc_TypeError, "Failed to simulate C array of type double");
return NULL;
}
int64_t output_size = input_size - window_size + 1;
PyObject *output = PyArray_SimpleNew(1, (npy_intp[]){ [0] = output_size }, NPY_DOUBLE);
double *output_data = PyArray_DATA((PyArrayObject *)output);
double cumsum_before = 0;
double cumsum_after = 0;
for (int i = 0; i < window_size; ++i) {
cumsum_after += input_data[i];
}
for (int i = 0; i < output_size - 1; ++i) {
output_data[i] = (cumsum_after - cumsum_before) / window_size;
cumsum_after += input_data[i + window_size];
cumsum_before += input_data[i];
}
output_data[output_size - 1] = (cumsum_after - cumsum_before) / window_size;
return output;
}
static PyMethodDef methods[] = {
{
"moving_average",
moving_average,
METH_VARARGS,
"Rolling mean of numpy array with specified window size"
},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"moving_average",
"C extension for finding the rolling mean of a numpy array",
-1,
methods
};
PyMODINIT_FUNC PyInit_moving_average(void) {
PyObject *module = PyModule_Create(&moduledef);
import_array();
return module;
}
METH_VARARGS specifies that the method only takes positional arguments. PyArg_ParseTuple allows you to parse these positional arguments. By using PyErr_SetString and returning NULL from the method, you can signal that an exception has occurred to the Python interpreter from the C extension. PyArray_AsCArray allows your method to be polymorphic when it comes to input array dtype, alignment, whether the array is C-contiguous (See "Can a numpy 1d array not be contiguous?") etc. without needing to create a copy of the array. If you instead used PyArray_DATA, you'd need to deal with this yourself. PyArray_SimpleNew allows you to create a new numpy array. This is similar to using np.empty. The array will not be initialized, and might contain non-deterministic junk which could surprise you if you forget to overwrite it.
构建C扩展
# setup.py
from setuptools import setup, Extension
import numpy
setup(
ext_modules=[
Extension(
'moving_average',
['moving_average.c'],
include_dirs=[numpy.get_include()]
)
]
)
# python setup.py build_ext --build-lib=.
基准
import numpy as np
# Our compiled C extension:
from moving_average import moving_average as moving_average_c
# Answer by Jaime using npcumsum
def moving_average_cumsum(a, n) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
# Answer by yatu using np.convolve
def moving_average_convolve(a, n):
return np.convolve(a, np.ones(n), 'valid') / n
a = np.random.rand(1_000_000)
print('window_size = 3')
%timeit moving_average_c(a, 3)
%timeit moving_average_cumsum(a, 3)
%timeit moving_average_convolve(a, 3)
print('\nwindow_size = 100')
%timeit moving_average_c(a, 100)
%timeit moving_average_cumsum(a, 100)
%timeit moving_average_convolve(a, 100)
window_size = 3
958 µs ± 4.68 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
4.52 ms ± 15.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
809 µs ± 463 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
window_size = 100
977 µs ± 937 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
6.16 ms ± 19.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
14.2 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
我觉得使用瓶颈可以很容易地解决这个问题
参见下面的基本示例:
import numpy as np
import bottleneck as bn
a = np.random.randint(4, 1000, size=(5, 7))
mm = bn.move_mean(a, window=2, min_count=1)
这就给出了每个轴上的移动平均值。
“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于第一个元素或如果数组有nan值)。
好在瓶颈有助于处理nan值,而且非常高效。
如果你已经有一个已知大小的数组
import numpy as np
M=np.arange(12)
avg=[]
i=0
while i<len(M)-2: #for n point average len(M) - (n-1)
avg.append((M[i]+M[i+1]+M[i+2])/3) #n is denominator
i+=1
print(avg)