似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。

我的问题有两个方面:

用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?


当前回答

这里有许多实现这一点的方法,以及一些基准测试。最好的方法是使用来自其他库的优化代码。瓶颈。Move_mean方法可能是最好的方法。scipy。卷积方法也非常快,可扩展,并且语法和概念简单,但是对于非常大的窗口值不能很好地扩展。numpy。如果你需要一个纯numpy方法,Cumsum方法是很好的。

注意:其中一些(例如:瓶颈。move_mean)不是居中的,并且会转移你的数据。

import numpy as np
import scipy as sci
import scipy.signal as sig
import pandas as pd
import bottleneck as bn
import time as time

def rollavg_direct(a,n): 
    'Direct "for" loop'
    assert n%2==1
    b = a*0.0
    for i in range(len(a)) :
        b[i]=a[max(i-n//2,0):min(i+n//2+1,len(a))].mean()
    return b

def rollavg_comprehension(a,n):
    'List comprehension'
    assert n%2==1
    r,N = int(n/2),len(a)
    return np.array([a[max(i-r,0):min(i+r+1,N)].mean() for i in range(N)]) 

def rollavg_convolve(a,n):
    'scipy.convolve'
    assert n%2==1
    return sci.convolve(a,np.ones(n,dtype='float')/n, 'same')[n//2:-n//2+1]  

def rollavg_convolve_edges(a,n):
    'scipy.convolve, edge handling'
    assert n%2==1
    return sci.convolve(a,np.ones(n,dtype='float'), 'same')/sci.convolve(np.ones(len(a)),np.ones(n), 'same')  

def rollavg_cumsum(a,n):
    'numpy.cumsum'
    assert n%2==1
    cumsum_vec = np.cumsum(np.insert(a, 0, 0)) 
    return (cumsum_vec[n:] - cumsum_vec[:-n]) / n

def rollavg_cumsum_edges(a,n):
    'numpy.cumsum, edge handling'
    assert n%2==1
    N = len(a)
    cumsum_vec = np.cumsum(np.insert(np.pad(a,(n-1,n-1),'constant'), 0, 0)) 
    d = np.hstack((np.arange(n//2+1,n),np.ones(N-n)*n,np.arange(n,n//2,-1)))  
    return (cumsum_vec[n+n//2:-n//2+1] - cumsum_vec[n//2:-n-n//2]) / d

def rollavg_roll(a,n):
    'Numpy array rolling'
    assert n%2==1
    N = len(a)
    rolling_idx = np.mod((N-1)*np.arange(n)[:,None] + np.arange(N), N)
    return a[rolling_idx].mean(axis=0)[n-1:] 

def rollavg_roll_edges(a,n):
    # see https://stackoverflow.com/questions/42101082/fast-numpy-roll
    'Numpy array rolling, edge handling'
    assert n%2==1
    a = np.pad(a,(0,n-1-n//2), 'constant')*np.ones(n)[:,None]
    m = a.shape[1]
    idx = np.mod((m-1)*np.arange(n)[:,None] + np.arange(m), m) # Rolling index
    out = a[np.arange(-n//2,n//2)[:,None], idx]
    d = np.hstack((np.arange(1,n),np.ones(m-2*n+1+n//2)*n,np.arange(n,n//2,-1)))
    return (out.sum(axis=0)/d)[n//2:]

def rollavg_pandas(a,n):
    'Pandas rolling average'
    return pd.DataFrame(a).rolling(n, center=True, min_periods=1).mean().to_numpy()

def rollavg_bottlneck(a,n):
    'bottleneck.move_mean'
    return bn.move_mean(a, window=n, min_count=1)

N = 10**6
a = np.random.rand(N)
functions = [rollavg_direct, rollavg_comprehension, rollavg_convolve, 
        rollavg_convolve_edges, rollavg_cumsum, rollavg_cumsum_edges, 
        rollavg_pandas, rollavg_bottlneck, rollavg_roll, rollavg_roll_edges]

print('Small window (n=3)')
%load_ext memory_profiler
for f in functions : 
    print('\n'+f.__doc__+ ' : ')
    %timeit b=f(a,3)

print('\nLarge window (n=1001)')
for f in functions[0:-2] : 
    print('\n'+f.__doc__+ ' : ')
    %timeit b=f(a,1001)

print('\nMemory\n')
print('Small window (n=3)')
N = 10**7
a = np.random.rand(N)
%load_ext memory_profiler
for f in functions[2:] : 
    print('\n'+f.__doc__+ ' : ')
    %memit b=f(a,3)

print('\nLarge window (n=1001)')
for f in functions[2:-2] : 
    print('\n'+f.__doc__+ ' : ')
    %memit b=f(a,1001)

定时,小窗口(n=3)

Direct "for" loop : 

4.14 s ± 23.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

List comprehension : 
3.96 s ± 27.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

scipy.convolve : 
1.07 ms ± 26.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

scipy.convolve, edge handling : 
4.68 ms ± 9.69 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

numpy.cumsum : 
5.31 ms ± 5.11 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

numpy.cumsum, edge handling : 
8.52 ms ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Pandas rolling average : 
9.85 ms ± 9.63 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

bottleneck.move_mean : 
1.3 ms ± 12.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Numpy array rolling : 
31.3 ms ± 91.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Numpy array rolling, edge handling : 
61.1 ms ± 55.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

定时,大窗口(n=1001)

Direct "for" loop : 
4.67 s ± 34 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

List comprehension : 
4.46 s ± 14.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

scipy.convolve : 
103 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

scipy.convolve, edge handling : 
272 ms ± 1.23 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

numpy.cumsum : 
5.19 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

numpy.cumsum, edge handling : 
8.7 ms ± 11.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Pandas rolling average : 
9.67 ms ± 199 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

bottleneck.move_mean : 
1.31 ms ± 15.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

内存,小窗口(n=3)

The memory_profiler extension is already loaded. To reload it, use:
  %reload_ext memory_profiler

scipy.convolve : 
peak memory: 362.66 MiB, increment: 73.61 MiB

scipy.convolve, edge handling : 
peak memory: 510.24 MiB, increment: 221.19 MiB

numpy.cumsum : 
peak memory: 441.81 MiB, increment: 152.76 MiB

numpy.cumsum, edge handling : 
peak memory: 518.14 MiB, increment: 228.84 MiB

Pandas rolling average : 
peak memory: 449.34 MiB, increment: 160.02 MiB

bottleneck.move_mean : 
peak memory: 374.17 MiB, increment: 75.54 MiB

Numpy array rolling : 
peak memory: 661.29 MiB, increment: 362.65 MiB

Numpy array rolling, edge handling : 
peak memory: 1111.25 MiB, increment: 812.61 MiB

内存,大窗口(n=1001)

scipy.convolve : 
peak memory: 370.62 MiB, increment: 71.83 MiB

scipy.convolve, edge handling : 
peak memory: 521.98 MiB, increment: 223.18 MiB

numpy.cumsum : 
peak memory: 451.32 MiB, increment: 152.52 MiB

numpy.cumsum, edge handling : 
peak memory: 527.51 MiB, increment: 228.71 MiB

Pandas rolling average : 
peak memory: 451.25 MiB, increment: 152.50 MiB

bottleneck.move_mean : 
peak memory: 374.64 MiB, increment: 75.85 MiB

其他回答

所有的答案似乎都集中在预先计算的列表的情况下。对于实际运行的用例,数字一个接一个地进来,这里有一个简单的类,它提供了对最后N个值求平均的服务:

import numpy as np
class RunningAverage():
    def __init__(self, stack_size):
        self.stack = [0 for _ in range(stack_size)]
        self.ptr = 0
        self.full_cycle = False
    def add(self,value):
        self.stack[self.ptr] = value
        self.ptr += 1
        if self.ptr == len(self.stack):
            self.full_cycle = True
            self.ptr = 0
    def get_avg(self):
        if self.full_cycle:
            return np.mean(self.stack)
        else:
            return np.mean(self.stack[:self.ptr])

用法:

N = 50  # size of the averaging window
run_avg = RunningAverage(N)
for i in range(1000):
    value = <my computation>
    run_avg.add(value)
    if i % 20 ==0: # print once in 20 iters:
        print(f'the average value is {run_avg.get_avg()}')

从Numpy 1.20开始,sliding_window_view提供了一种在元素窗口中滑动/滚动的方法。然后你可以分别取平均值。

例如,对于一个4元素的窗口:

from numpy.lib.stride_tricks import sliding_window_view

# values = np.array([5, 3, 8, 10, 2, 1, 5, 1, 0, 2])
np.average(sliding_window_view(values, window_shape = 4), axis=1)
# array([6.5, 5.75, 5.25, 4.5, 2.25, 1.75, 2])

注意sliding_window_view的中间结果:

# values = np.array([5, 3, 8, 10, 2, 1, 5, 1, 0, 2])
sliding_window_view(values, window_shape = 4)
# array([[ 5,  3,  8, 10],
#        [ 3,  8, 10,  2],
#        [ 8, 10,  2,  1],
#        [10,  2,  1,  5],
#        [ 2,  1,  5,  1],
#        [ 1,  5,  1,  0],
#        [ 5,  1,  0,  2]])

下面是一个使用numba的快速实现(注意类型)。注意它确实包含移位的nan。

import numpy as np
import numba as nb

@nb.jit(nb.float64[:](nb.float64[:],nb.int64),
        fastmath=True,nopython=True)
def moving_average( array, window ):    
    ret = np.cumsum(array)
    ret[window:] = ret[window:] - ret[:-window]
    ma = ret[window - 1:] / window
    n = np.empty(window-1); n.fill(np.nan)
    return np.concatenate((n.ravel(), ma.ravel())) 

如果你已经有一个已知大小的数组

import numpy as np                                         
M=np.arange(12)
                                                               
avg=[]                                                         
i=0
while i<len(M)-2: #for n point average len(M) - (n-1)
        avg.append((M[i]+M[i+1]+M[i+2])/3) #n is denominator                       
        i+=1     
                                                                                                    
print(avg)

您也可以编写自己的Python C扩展。

这当然不是最简单的方法,但与使用np相比,这将使您运行得更快,内存效率更高。堆积:作为建筑块的堆积

// moving_average.c
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <Python.h>
#include <numpy/arrayobject.h>

static PyObject *moving_average(PyObject *self, PyObject *args) {
    PyObject *input;
    int64_t window_size;
    PyArg_ParseTuple(args, "Ol", &input, &window_size);
    if (PyErr_Occurred()) return NULL;
    if (!PyArray_Check(input) || !PyArray_ISNUMBER((PyArrayObject *)input)) {
        PyErr_SetString(PyExc_TypeError, "First argument must be a numpy array with numeric dtype");
        return NULL;
    }
    
    int64_t input_size = PyObject_Size(input);
    double *input_data;
    if (PyArray_AsCArray(&input, &input_data, (npy_intp[]){ [0] = input_size }, 1, PyArray_DescrFromType(NPY_DOUBLE)) != 0) {
        PyErr_SetString(PyExc_TypeError, "Failed to simulate C array of type double");
        return NULL;
    }
    
    int64_t output_size = input_size - window_size + 1;
    PyObject *output = PyArray_SimpleNew(1, (npy_intp[]){ [0] = output_size }, NPY_DOUBLE);
    double *output_data = PyArray_DATA((PyArrayObject *)output);
    
    double cumsum_before = 0;
    double cumsum_after = 0;
    for (int i = 0; i < window_size; ++i) {
        cumsum_after += input_data[i];
    }
    for (int i = 0; i < output_size - 1; ++i) {
        output_data[i] = (cumsum_after - cumsum_before) / window_size;
        cumsum_after += input_data[i + window_size];
        cumsum_before += input_data[i];
    }
    output_data[output_size - 1] = (cumsum_after - cumsum_before) / window_size;

    return output;
}

static PyMethodDef methods[] = {
    {
        "moving_average", 
        moving_average, 
        METH_VARARGS, 
        "Rolling mean of numpy array with specified window size"
    },
    {NULL, NULL, 0, NULL}
};

static struct PyModuleDef moduledef = {
    PyModuleDef_HEAD_INIT,
    "moving_average",
    "C extension for finding the rolling mean of a numpy array",
    -1,
    methods
};

PyMODINIT_FUNC PyInit_moving_average(void) {
    PyObject *module = PyModule_Create(&moduledef);
    import_array();
    return module;
}

METH_VARARGS specifies that the method only takes positional arguments. PyArg_ParseTuple allows you to parse these positional arguments. By using PyErr_SetString and returning NULL from the method, you can signal that an exception has occurred to the Python interpreter from the C extension. PyArray_AsCArray allows your method to be polymorphic when it comes to input array dtype, alignment, whether the array is C-contiguous (See "Can a numpy 1d array not be contiguous?") etc. without needing to create a copy of the array. If you instead used PyArray_DATA, you'd need to deal with this yourself. PyArray_SimpleNew allows you to create a new numpy array. This is similar to using np.empty. The array will not be initialized, and might contain non-deterministic junk which could surprise you if you forget to overwrite it.

构建C扩展

# setup.py
from setuptools import setup, Extension
import numpy

setup(
  ext_modules=[
    Extension(
      'moving_average',
      ['moving_average.c'],
      include_dirs=[numpy.get_include()]
    )
  ]
)

# python setup.py build_ext --build-lib=.

基准

import numpy as np

# Our compiled C extension:
from moving_average import moving_average as moving_average_c

# Answer by Jaime using npcumsum
def moving_average_cumsum(a, n) :
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret[n - 1:] / n

# Answer by yatu using np.convolve
def moving_average_convolve(a, n):
    return np.convolve(a, np.ones(n), 'valid') / n

a = np.random.rand(1_000_000)
print('window_size = 3')
%timeit moving_average_c(a, 3)
%timeit moving_average_cumsum(a, 3)
%timeit moving_average_convolve(a, 3)

print('\nwindow_size = 100')
%timeit moving_average_c(a, 100)
%timeit moving_average_cumsum(a, 100)
%timeit moving_average_convolve(a, 100)
window_size = 3
958 µs ± 4.68 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
4.52 ms ± 15.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
809 µs ± 463 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

window_size = 100
977 µs ± 937 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
6.16 ms ± 19.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
14.2 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)