我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
当前回答
我的2c价值:
我执行了以下操作:
sale_method = pd.DataFrame(model_data['Sale Method'].str.upper())
sale_method['sale_classification'] = \
np.where(sale_method['Sale Method'].isin(['PRIVATE']),
'private',
np.where(sale_method['Sale Method']
.str.contains('AUCTION'),
'auction',
'other'
)
)
其他回答
您可以尝试将它们视为字符串:
df[df['A'].astype(str).str.contains("Hello|Britain")]
这是我最后为部分字符串匹配所做的。如果有人有更有效的方法,请告诉我。
def stringSearchColumn_DataFrame(df, colName, regex):
newdf = DataFrame()
for idx, record in df[colName].iteritems():
if re.search(regex, record):
newdf = concat([df[df[colName] == record], newdf], ignore_index=True)
return newdf
我的2c价值:
我执行了以下操作:
sale_method = pd.DataFrame(model_data['Sale Method'].str.upper())
sale_method['sale_classification'] = \
np.where(sale_method['Sale Method'].isin(['PRIVATE']),
'private',
np.where(sale_method['Sale Method']
.str.contains('AUCTION'),
'auction',
'other'
)
)
矢量化字符串方法(即Series.str)允许您执行以下操作:
df[df['A'].str.contains("hello")]
这在熊猫0.8.1及以上版本中可用。
有点类似于@cs95的答案,但这里不需要指定引擎:
df.query('A.str.contains("hello").values')