我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。

类似于这个成语:

re.search(pattern, cell_in_question) 

返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。


当前回答

这是我最后为部分字符串匹配所做的。如果有人有更有效的方法,请告诉我。

def stringSearchColumn_DataFrame(df, colName, regex):
    newdf = DataFrame()
    for idx, record in df[colName].iteritems():

        if re.search(regex, record):
            newdf = concat([df[df[colName] == record], newdf], ignore_index=True)

    return newdf

其他回答

如果有人想知道如何执行相关问题:“按部分字符串选择列”

Use:

df.filter(like='hello')  # select columns which contain the word hello

若要通过部分字符串匹配来选择行,请将axis=0传递到筛选器:

# selects rows which contain the word hello in their index label
df.filter(like='hello', axis=0)  

我在ipython笔记本电脑的macos上使用熊猫0.14.1。我尝试了上面的建议行:

df[df["A"].str.contains("Hello|Britain")]

并得到一个错误:

无法使用包含NA/NaN值的矢量进行索引

但当添加了“==True”条件时,效果非常好,如下所示:

df[df['A'].str.contains("Hello|Britain")==True]

这是我最后为部分字符串匹配所做的。如果有人有更有效的方法,请告诉我。

def stringSearchColumn_DataFrame(df, colName, regex):
    newdf = DataFrame()
    for idx, record in df[colName].iteritems():

        if re.search(regex, record):
            newdf = concat([df[df[colName] == record], newdf], ignore_index=True)

    return newdf

如果需要对panda数据帧列中的字符串进行不区分大小写的搜索:

df[df['A'].str.contains("hello", case=False)]

我的2c价值:

我执行了以下操作:

sale_method = pd.DataFrame(model_data['Sale Method'].str.upper())
sale_method['sale_classification'] = \
    np.where(sale_method['Sale Method'].isin(['PRIVATE']),
             'private',
             np.where(sale_method['Sale Method']
                      .str.contains('AUCTION'),
                      'auction',
                      'other'
             )
    )