我正在用logging.error将Python异常消息打印到日志文件:
import logging
try:
1/0
except ZeroDivisionError as e:
logging.error(e) # ERROR:root:division by zero
是否可以打印有关异常和生成异常的代码的更详细信息,而不仅仅是异常字符串?行号或堆栈跟踪之类的东西会很棒。
我正在用logging.error将Python异常消息打印到日志文件:
import logging
try:
1/0
except ZeroDivisionError as e:
logging.error(e) # ERROR:root:division by zero
是否可以打印有关异常和生成异常的代码的更详细信息,而不仅仅是异常字符串?行号或堆栈跟踪之类的东西会很棒。
当前回答
我把所有的函数都包在我的自定义设计的日志记录器周围:
import json
import timeit
import traceback
import sys
import unidecode
def main_writer(f,argument):
try:
f.write(str(argument))
except UnicodeEncodeError:
f.write(unidecode.unidecode(argument))
def logger(*argv,logfile="log.txt",singleLine = False):
"""
Writes Logs to LogFile
"""
with open(logfile, 'a+') as f:
for arg in argv:
if arg == "{}":
continue
if type(arg) == dict and len(arg)!=0:
json_object = json.dumps(arg, indent=4, default=str)
f.write(str(json_object))
f.flush()
"""
for key,val in arg.items():
f.write(str(key) + " : "+ str(val))
f.flush()
"""
elif type(arg) == list and len(arg)!=0:
for each in arg:
main_writer(f,each)
f.write("\n")
f.flush()
else:
main_writer(f,arg)
f.flush()
if singleLine==False:
f.write("\n")
if singleLine==True:
f.write("\n")
def tryFunc(func, func_name=None, *args, **kwargs):
"""
Time for Successfull Runs
Exception Traceback for Unsuccessful Runs
"""
stack = traceback.extract_stack()
filename, codeline, funcName, text = stack[-2]
func_name = func.__name__ if func_name is None else func_name # sys._getframe().f_code.co_name # func.__name__
start = timeit.default_timer()
x = None
try:
x = func(*args, **kwargs)
stop = timeit.default_timer()
# logger("Time to Run {} : {}".format(func_name, stop - start))
except Exception as e:
logger("Exception Occurred for {} :".format(func_name))
logger("Basic Error Info :",e)
logger("Full Error TraceBack :")
# logger(e.message, e.args)
logger(traceback.format_exc())
return x
def bad_func():
return 'a'+ 7
if __name__ == '__main__':
logger(234)
logger([1,2,3])
logger(['a','b','c'])
logger({'a':7,'b':8,'c':9})
tryFunc(bad_func)
其他回答
一个干净的方法是使用format_exc(),然后解析输出以获得相关部分:
from traceback import format_exc
try:
1/0
except Exception:
print 'the relevant part is: '+format_exc().split('\n')[-2]
问候
我把所有的函数都包在我的自定义设计的日志记录器周围:
import json
import timeit
import traceback
import sys
import unidecode
def main_writer(f,argument):
try:
f.write(str(argument))
except UnicodeEncodeError:
f.write(unidecode.unidecode(argument))
def logger(*argv,logfile="log.txt",singleLine = False):
"""
Writes Logs to LogFile
"""
with open(logfile, 'a+') as f:
for arg in argv:
if arg == "{}":
continue
if type(arg) == dict and len(arg)!=0:
json_object = json.dumps(arg, indent=4, default=str)
f.write(str(json_object))
f.flush()
"""
for key,val in arg.items():
f.write(str(key) + " : "+ str(val))
f.flush()
"""
elif type(arg) == list and len(arg)!=0:
for each in arg:
main_writer(f,each)
f.write("\n")
f.flush()
else:
main_writer(f,arg)
f.flush()
if singleLine==False:
f.write("\n")
if singleLine==True:
f.write("\n")
def tryFunc(func, func_name=None, *args, **kwargs):
"""
Time for Successfull Runs
Exception Traceback for Unsuccessful Runs
"""
stack = traceback.extract_stack()
filename, codeline, funcName, text = stack[-2]
func_name = func.__name__ if func_name is None else func_name # sys._getframe().f_code.co_name # func.__name__
start = timeit.default_timer()
x = None
try:
x = func(*args, **kwargs)
stop = timeit.default_timer()
# logger("Time to Run {} : {}".format(func_name, stop - start))
except Exception as e:
logger("Exception Occurred for {} :".format(func_name))
logger("Basic Error Info :",e)
logger("Full Error TraceBack :")
# logger(e.message, e.args)
logger(traceback.format_exc())
return x
def bad_func():
return 'a'+ 7
if __name__ == '__main__':
logger(234)
logger([1,2,3])
logger(['a','b','c'])
logger({'a':7,'b':8,'c':9})
tryFunc(bad_func)
记录器。异常将在错误消息旁边输出堆栈跟踪。
例如:
import logging
try:
1/0
except ZeroDivisionError:
logging.exception("message")
输出:
ERROR:root:message
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: integer division or modulo by zero
@Paulo支票笔记,“注意在python3中你必须调用日志记录。except部分中的异常方法。如果在任意位置调用此方法,可能会得到一个奇怪的异常。医生对此提出了警告。”
您可以记录堆栈跟踪而不出现异常。
https://docs.python.org/3/library/logging.html#logging.Logger.debug
The second optional keyword argument is stack_info, which defaults to False. If true, stack information is added to the logging message, including the actual logging call. Note that this is not the same stack information as that displayed through specifying exc_info: The former is stack frames from the bottom of the stack up to the logging call in the current thread, whereas the latter is information about stack frames which have been unwound, following an exception, while searching for exception handlers.
例子:
>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)
>>> logging.getLogger().info('This prints the stack', stack_info=True)
INFO:root:This prints the stack
Stack (most recent call last):
File "<stdin>", line 1, in <module>
>>>
如果你可以处理额外的依赖,那么使用twisted.log,你不必显式地记录错误,而且它还会返回整个回溯和时间到文件或流。