我正在使用Python的max和min函数对列表进行minimax算法,我需要max()或min()返回值的索引。换句话说,我需要知道哪一步棋产生了最大(第一个玩家的回合)或最小(第二个玩家的回合)值。
for i in range(9):
new_board = current_board.new_board_with_move([i / 3, i % 3], player)
if new_board:
temp = min_max(new_board, depth + 1, not is_min_level)
values.append(temp)
if is_min_level:
return min(values)
else:
return max(values)
我需要能够返回最小值或最大值的实际索引,而不仅仅是值。
假设您有一个列表values =[3,6,1,5],并且需要最小元素的索引,即在本例中index_min = 2。
避免使用其他答案中给出的itemgetter()的解决方案,而是使用
index_min = min(range(len(values)), key=values.__getitem__)
因为它不需要导入操作符,也不需要使用枚举,而且它总是比使用itemgetter()的解决方案更快(下面的基准测试)。
如果您正在处理numpy数组,或者可以负担numpy作为依赖项,也可以考虑使用
import numpy as np
index_min = np.argmin(values)
这将比第一个解决方案更快,即使你将它应用于一个纯Python列表,如果:
它比一些元素大(在我的机器上大约2**4个元素)
您可以将内存从纯列表复制到numpy数组
正如这一基准所指出的:
我已经用python 2.7在我的机器上运行了上面两个解决方案(蓝色:纯python,第一个解决方案)(红色,numpy解决方案)和基于itemgetter()的标准解决方案(黑色,参考解决方案)的基准测试。
python 3.5的相同基准测试表明,这些方法与上面给出的python 2.7情况完全相同
假设你有这样一个列表:
a = [9,8,7]
下面的两个方法是非常紧凑的方法,可以获得具有最小元素及其索引的元组。两者都需要差不多的时间来处理。我更喜欢压缩法,但那是我的口味。
邮政法
element, index = min(list(zip(a, range(len(a)))))
min(list(zip(a, range(len(a)))))
(7, 2)
timeit min(list(zip(a, range(len(a)))))
1.36 µs ± 107 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
列举的方法
index, element = min(list(enumerate(a)), key=lambda x:x[1])
min(list(enumerate(a)), key=lambda x:x[1])
(2, 7)
timeit min(list(enumerate(a)), key=lambda x:x[1])
1.45 µs ± 78.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
使用numpy模块的函数numpy.where
import numpy as n
x = n.array((3,3,4,7,4,56,65,1))
最小值指数:
idx = n.where(x==x.min())[0]
最大值指数:
idx = n.where(x==x.max())[0]
事实上,这个函数要强大得多。你可以提出各种布尔运算
数值在3至60之间的指数:
idx = n.where((x>3)&(x<60))[0]
idx
array([2, 3, 4, 5])
x[idx]
array([ 4, 7, 4, 56])
那么这个呢:
a=[1,55,2,36,35,34,98,0]
max_index=dict(zip(a,range(len(a))))[max(a)]
它从a中的项中创建一个字典作为键,并将它们的索引作为值,因此dict(zip(a,range(len(a))))[max(a)]返回对应于键max(a)的值,这是a中最大值的索引。我是python初学者,所以我不知道这个解决方案的计算复杂性。