我正在使用Python的max和min函数对列表进行minimax算法,我需要max()或min()返回值的索引。换句话说,我需要知道哪一步棋产生了最大(第一个玩家的回合)或最小(第二个玩家的回合)值。

for i in range(9):
    new_board = current_board.new_board_with_move([i / 3, i % 3], player)

    if new_board:
        temp = min_max(new_board, depth + 1, not is_min_level)  
        values.append(temp)

if is_min_level:
    return min(values)
else:
    return max(values)

我需要能够返回最小值或最大值的实际索引,而不仅仅是值。


当前回答

https://docs.python.org/3/library/functions.html#max

如果有多个最大项,则函数返回遇到的第一个项。这与其他保持排序稳定性的工具是一致的,例如sorted(iterable, key=keyfunc, reverse=True)[0]

要获得比第一次遇到的更多信息,请使用sort方法。

import operator

x = [2, 5, 7, 4, 8, 2, 6, 1, 7, 1, 8, 3, 4, 9, 3, 6, 5, 0, 9, 0]

min = False
max = True

min_val_index = sorted( list(zip(x, range(len(x)))), key = operator.itemgetter(0), reverse = min )

max_val_index = sorted( list(zip(x, range(len(x)))), key = operator.itemgetter(0), reverse = max )


min_val_index[0]
>(0, 17)

max_val_index[0]
>(9, 13)

import ittertools

max_val = max_val_index[0][0]

maxes = [n for n in itertools.takewhile(lambda x: x[0] == max_val, max_val_index)]

其他回答

我对此也很感兴趣,并使用perfplot(我的一个爱好项目)比较了一些建议的解决方案。

事实证明

min(range(len(a)), key=a.__getitem__)

是用于小型和大型列表的最快方法。

在以前的版本中,np。阿格明过去常吃蛋糕。)


生成图的代码:

import numpy as np
import operator
import perfplot


def min_enumerate(a):
    return min(enumerate(a), key=lambda x: x[1])[0]


def min_enumerate_itemgetter(a):
    min_index, min_value = min(enumerate(a), key=operator.itemgetter(1))
    return min_index


def getitem(a):
    return min(range(len(a)), key=a.__getitem__)


def np_argmin(a):
    return np.argmin(a)


b = perfplot.bench(
    setup=lambda n: np.random.rand(n).tolist(),
    kernels=[
        min_enumerate,
        min_enumerate_itemgetter,
        getitem,
        np_argmin,
    ],
    n_range=[2**k for k in range(15)],
)
b.show()

我认为上面的答案解决了你的问题,但我想我要分享一个方法,给你最小值和最小值出现的所有指标。

minval = min(mylist)
ind = [i for i, v in enumerate(mylist) if v == minval]

它两次通过列表,但仍然相当快。然而,它比找到第一次遇到最小值的指数略慢。如果你只需要其中一个极小值,就用马特·安德森的解,如果你需要所有的,就用这个。

假设您有一个列表values =[3,6,1,5],并且需要最小元素的索引,即在本例中index_min = 2。

避免使用其他答案中给出的itemgetter()的解决方案,而是使用

index_min = min(range(len(values)), key=values.__getitem__)

因为它不需要导入操作符,也不需要使用枚举,而且它总是比使用itemgetter()的解决方案更快(下面的基准测试)。

如果您正在处理numpy数组,或者可以负担numpy作为依赖项,也可以考虑使用

import numpy as np
index_min = np.argmin(values)

这将比第一个解决方案更快,即使你将它应用于一个纯Python列表,如果:

它比一些元素大(在我的机器上大约2**4个元素) 您可以将内存从纯列表复制到numpy数组

正如这一基准所指出的:

我已经用python 2.7在我的机器上运行了上面两个解决方案(蓝色:纯python,第一个解决方案)(红色,numpy解决方案)和基于itemgetter()的标准解决方案(黑色,参考解决方案)的基准测试。 python 3.5的相同基准测试表明,这些方法与上面给出的python 2.7情况完全相同

可能更简单的解决方案是将值数组转换为值、索引对数组,并取其中的最大/最小值。这将给出具有max/min的最大/最小索引(即对的比较首先比较第一个元素,然后比较第二个元素,如果第一个元素相同)。注意,没有必要实际创建数组,因为min/max允许生成器作为输入。

values = [3,4,5]
(m,i) = max((v,i) for i,v in enumerate(values))
print (m,i) #(5, 2)

如果你不想导入额外的模块,找到列表中值最小的索引的简单方法:

min_value = min(values)
indexes_with_min_value = [i for i in range(0,len(values)) if values[i] == min_value]

然后选择第一个例子:

choosen = indexes_with_min_value[0]