我正在使用Python的max和min函数对列表进行minimax算法,我需要max()或min()返回值的索引。换句话说,我需要知道哪一步棋产生了最大(第一个玩家的回合)或最小(第二个玩家的回合)值。

for i in range(9):
    new_board = current_board.new_board_with_move([i / 3, i % 3], player)

    if new_board:
        temp = min_max(new_board, depth + 1, not is_min_level)  
        values.append(temp)

if is_min_level:
    return min(values)
else:
    return max(values)

我需要能够返回最小值或最大值的实际索引,而不仅仅是值。


当前回答

如果枚举列表中的项目,可以同时找到min/max索引和值,但对列表的原始值执行min/max。像这样:

import operator
min_index, min_value = min(enumerate(values), key=operator.itemgetter(1))
max_index, max_value = max(enumerate(values), key=operator.itemgetter(1))

这样,对于min(或max),列表将只遍历一次。

其他回答

假设你有这样一个列表:

a = [9,8,7]

下面的两个方法是非常紧凑的方法,可以获得具有最小元素及其索引的元组。两者都需要差不多的时间来处理。我更喜欢压缩法,但那是我的口味。

邮政法

element, index = min(list(zip(a, range(len(a)))))

min(list(zip(a, range(len(a)))))
(7, 2)

timeit min(list(zip(a, range(len(a)))))
1.36 µs ± 107 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

列举的方法

index, element = min(list(enumerate(a)), key=lambda x:x[1])

min(list(enumerate(a)), key=lambda x:x[1])
(2, 7)

timeit min(list(enumerate(a)), key=lambda x:x[1])
1.45 µs ± 78.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

我对此也很感兴趣,并使用perfplot(我的一个爱好项目)比较了一些建议的解决方案。

事实证明

min(range(len(a)), key=a.__getitem__)

是用于小型和大型列表的最快方法。

在以前的版本中,np。阿格明过去常吃蛋糕。)


生成图的代码:

import numpy as np
import operator
import perfplot


def min_enumerate(a):
    return min(enumerate(a), key=lambda x: x[1])[0]


def min_enumerate_itemgetter(a):
    min_index, min_value = min(enumerate(a), key=operator.itemgetter(1))
    return min_index


def getitem(a):
    return min(range(len(a)), key=a.__getitem__)


def np_argmin(a):
    return np.argmin(a)


b = perfplot.bench(
    setup=lambda n: np.random.rand(n).tolist(),
    kernels=[
        min_enumerate,
        min_enumerate_itemgetter,
        getitem,
        np_argmin,
    ],
    n_range=[2**k for k in range(15)],
)
b.show()

使用numpy模块的函数numpy.where

import numpy as n
x = n.array((3,3,4,7,4,56,65,1))

最小值指数:

idx = n.where(x==x.min())[0]

最大值指数:

idx = n.where(x==x.max())[0]

事实上,这个函数要强大得多。你可以提出各种布尔运算 数值在3至60之间的指数:

idx = n.where((x>3)&(x<60))[0]
idx
array([2, 3, 4, 5])
x[idx]
array([ 4,  7,  4, 56])

只是对刚才所说的稍加补充。 values.index(min(values))似乎返回min的最小索引。下面的语句将获得最大索引:

    values.reverse()
    (values.index(min(values)) + len(values) - 1) % len(values)
    values.reverse()

如果原地反转的副作用不重要,最后一行可以省略。

遍历所有发生的事件

    indices = []
    i = -1
    for _ in range(values.count(min(values))):
      i = values[i + 1:].index(min(values)) + i + 1
      indices.append(i)

为了简洁起见。在循环之外缓存min(values)和values.count(min)可能是一个更好的主意。

假设你有一个以下列表my_list =[1,2,3,4,5,6,7,8,9,10],我们知道如果我们执行max(my_list),它将返回10,而min(my_list)将返回1。现在,我们想要获得最大或最小元素的索引,我们可以执行以下操作。

My_list = [1,2,3,4,5,6,7,8,9,10] Max_value = max(my_list) #返回10 my_list.index(max_value) #返回9 #获取最小值的索引 Min_value = min(my_list) #返回1 min_value = my_list.index(min_value) #返回0