如何将NumPy数组转储为人类可读格式的csv文件?
当前回答
numpy。Savetxt将数组保存到文本文件中。
import numpy
a = numpy.asarray([ [1,2,3], [4,5,6], [7,8,9] ])
numpy.savetxt("foo.csv", a, delimiter=",")
其他回答
numpy。Savetxt将数组保存到文本文件中。
import numpy
a = numpy.asarray([ [1,2,3], [4,5,6], [7,8,9] ])
numpy.savetxt("foo.csv", a, delimiter=",")
要将NumPy数组存储到文本文件中,请从NumPy模块导入savetxt
假设你的Numpy数组名称是train_df:
import numpy as np
np.savetxt('train_df.txt', train_df, fmt='%s')
OR
from numpy import savetxt
savetxt('train_df.txt', train_df, fmt='%s')
如前所述,将数组转储到CSV文件的最佳方法是使用.savetxt(…)方法。然而,有一些事情我们应该知道如何正确地去做。
例如,如果您有一个dtype = np.int32 as的numpy数组
narr = np.array([[1,2],
[3,4],
[5,6]], dtype=np.int32)
并使用savetxt as保存
np.savetxt('values.csv', narr, delimiter=",")
它将以浮点指数格式存储数据
1.000000000000000000e+00,2.000000000000000000e+00
3.000000000000000000e+00,4.000000000000000000e+00
5.000000000000000000e+00,6.000000000000000000e+00
您必须使用名为fmt as的参数来更改格式
np.savetxt('values.csv', narr, fmt="%d", delimiter=",")
以原始格式存储数据
以压缩的gz格式保存数据
此外,savetxt可以用于存储.gz压缩格式的数据,这在通过网络传输数据时可能很有用。
我们只需要将文件扩展名更改为.gz, numpy就会自动处理所有事情
np.savetxt('values.gz', narr, fmt="%d", delimiter=",")
希望能有所帮助
将记录数组写入带标题的CSV文件需要更多的工作。
这个例子从一个CSV文件(example. CSV)中读取,并将其内容写入另一个CSV文件(out.csv)。
import numpy as np
# Write an example CSV file with headers on first line
with open('example.csv', 'w') as fp:
fp.write('''\
col1,col2,col3
1,100.1,string1
2,222.2,second string
''')
# Read it as a Numpy record array
ar = np.recfromcsv('example.csv', encoding='ascii')
print(repr(ar))
# rec.array([(1, 100.1, 'string1'), (2, 222.2, 'second string')],
# dtype=[('col1', '<i8'), ('col2', '<f8'), ('col3', '<U13')])
# Write as a CSV file with headers on first line
with open('out.csv', 'w') as fp:
fp.write(','.join(ar.dtype.names) + '\n')
np.savetxt(fp, ar, '%s', ',')
注意,上面的例子不能处理带有逗号的字符串的值。要始终将非数字值括在引号内,请使用csv内置模块:
import csv
with open('out2.csv', 'w', newline='') as fp:
writer = csv.writer(fp, quoting=csv.QUOTE_NONNUMERIC)
writer.writerow(ar.dtype.names)
writer.writerows(ar.tolist())
我相信你也可以很简单地做到以下几点:
将Numpy数组转换为Pandas数据框架 另存为CSV
例如# 1:
# Libraries to import
import pandas as pd
import nump as np
#N x N numpy array (dimensions dont matter)
corr_mat #your numpy array
my_df = pd.DataFrame(corr_mat) #converting it to a pandas dataframe
例如# 2:
#save as csv
my_df.to_csv('foo.csv', index=False) # "foo" is the name you want to give
# to csv file. Make sure to add ".csv"
# after whatever name like in the code
推荐文章
- 试图在Windows 10上运行Python时出现“权限被拒绝”
- 向对象数组添加属性
- 如何在Django中设置时区
- 即使模板文件存在,Flask也会引发TemplateNotFound错误
- defaultdict的嵌套defaultdict
- 构造tkinter应用程序的最佳方法?
- 如何在Python中逐行打印字典?
- 当试图运行Python脚本时,“ImportError:没有命名模块”
- pylab和pyplot的区别是什么?
- Argparse:确定使用了哪个子解析器
- django导入错误-没有core.management模块
- JavaScript在数组中
- 在芹菜中检索队列中的任务列表
- Ruby数组到字符串的转换
- 如何分割(块)一个Ruby数组成X元素的部分?