如何将NumPy数组转储为人类可读格式的csv文件?
当前回答
Tofile是一个方便的函数:
import numpy as np
a = np.asarray([ [1,2,3], [4,5,6], [7,8,9] ])
a.tofile('foo.csv',sep=',',format='%10.5f')
手册页有一些有用的注释:
这是一个方便的函数,用于快速存储数组数据。 关于字节序和精度的信息会丢失,因此此方法不会丢失 对于用于归档数据或传输数据的文件来说,这是一个很好的选择 在具有不同字节序的机器之间。其中一些问题可以 通过将数据输出为文本文件来克服 速度和文件大小。
请注意。此函数不会生成多行csv文件,它将所有内容保存到一行。
其他回答
NumPy .savetxt()方法用于将NumPy数组保存到输出文本文件中,但是默认情况下它将使用科学表示法。
如果希望避免这种情况,则需要使用fmt参数指定适当的格式。例如,
import numpy as np
np.savetxt('output.csv', arr, delimiter=',', fmt='%f')
Tofile是一个方便的函数:
import numpy as np
a = np.asarray([ [1,2,3], [4,5,6], [7,8,9] ])
a.tofile('foo.csv',sep=',',format='%10.5f')
手册页有一些有用的注释:
这是一个方便的函数,用于快速存储数组数据。 关于字节序和精度的信息会丢失,因此此方法不会丢失 对于用于归档数据或传输数据的文件来说,这是一个很好的选择 在具有不同字节序的机器之间。其中一些问题可以 通过将数据输出为文本文件来克服 速度和文件大小。
请注意。此函数不会生成多行csv文件,它将所有内容保存到一行。
你可以用熊猫。它确实需要一些额外的内存,所以它并不总是可行的,但它非常快速和易于使用。
import pandas as pd
pd.DataFrame(np_array).to_csv("path/to/file.csv")
如果你不想要一个头或索引,使用to_csv("/path/to/file.csv", header=None, index=None)
如果你想写在列:
for x in np.nditer(a.T, order='C'):
file.write(str(x))
file.write("\n")
这里'a'是numpy数组的名称,'file'是要写入文件的变量。
如果你想写一行:
writer= csv.writer(file, delimiter=',')
for x in np.nditer(a.T, order='C'):
row.append(str(x))
writer.writerow(row)
numpy。Savetxt将数组保存到文本文件中。
import numpy
a = numpy.asarray([ [1,2,3], [4,5,6], [7,8,9] ])
numpy.savetxt("foo.csv", a, delimiter=",")
推荐文章
- 试图在Windows 10上运行Python时出现“权限被拒绝”
- 向对象数组添加属性
- 如何在Django中设置时区
- 即使模板文件存在,Flask也会引发TemplateNotFound错误
- defaultdict的嵌套defaultdict
- 构造tkinter应用程序的最佳方法?
- 如何在Python中逐行打印字典?
- 当试图运行Python脚本时,“ImportError:没有命名模块”
- pylab和pyplot的区别是什么?
- Argparse:确定使用了哪个子解析器
- django导入错误-没有core.management模块
- JavaScript在数组中
- 在芹菜中检索队列中的任务列表
- Ruby数组到字符串的转换
- 如何分割(块)一个Ruby数组成X元素的部分?