如何从一个简单的线性回归模型中提取p值(单个解释变量的系数的显著性为非零)和r平方值?例如……

x = cumsum(c(0, runif(100, -1, +1)))
y = cumsum(c(0, runif(100, -1, +1)))
fit = lm(y ~ x)
summary(fit)

我知道summary(fit)显示了p值和r平方值,但我希望能够将它们插入到其他变量中。


当前回答

r-squared:您可以直接从摘要对象summary(fit)$r.squared返回r-squared值。有关可以直接提取的所有项的列表,请参阅名称(summary(fit))。

模型p值:如果要得到整体回归模型的p值, 这篇博文概述了一个返回p值的函数:

lmp <- function (modelobject) {
    if (class(modelobject) != "lm") stop("Not an object of class 'lm' ")
    f <- summary(modelobject)$fstatistic
    p <- pf(f[1],f[2],f[3],lower.tail=F)
    attributes(p) <- NULL
    return(p)
}

> lmp(fit)
[1] 1.622665e-05

在只有一个预测因子的简单回归的情况下,模型p值和系数p值将是相同的。

系数p值:如果你有一个以上的预测器,那么上面将返回模型p值,系数p值可以使用以下方法提取:

summary(fit)$coefficients[,4]  

或者,您可以以类似于上面的摘要对象的方式从方差分析(fit)对象中获取系数的p值。

其他回答

注意,summary(fit)生成了一个包含您需要的所有信息的对象。se t和p向量都存储在里面。通过选择系数矩阵的第4列来获得p值(存储在summary对象中):

summary(fit)$coefficients[,4] 
summary(fit)$r.squared

尝试str(summary(fit))查看该对象包含的所有信息。

编辑:我误解了蔡斯的答案,它基本上告诉你如何得到我在这里给出的东西。

这是提取p值最简单的方法:

coef(summary(modelname))[, "Pr(>|t|)"]

虽然上面的两个答案都很好,但提取对象部分的过程更一般。

在许多情况下,函数返回列表,并且可以使用str()访问各个组件,str()将打印组件及其名称。然后您可以使用$操作符访问它们,即myobject$componentname。

在lm对象的情况下,有许多预定义的方法可以使用,如coef()、remainder()、summary()等,但你不会总是那么幸运。

另一个选择是使用cor.test函数,而不是lm:

> x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
> y <- c( 2.6,  3.1,  2.5,  5.0,  3.6,  4.0,  5.2,  2.8,  3.8)

> mycor = cor.test(x,y)
> mylm = lm(x~y)

# r and rsquared:
> cor.test(x,y)$estimate ** 2
      cor 
0.3262484 
> summary(lm(x~y))$r.squared
[1] 0.3262484

# P.value 

> lmp(lm(x~y))  # Using the lmp function defined in Chase's answer
[1] 0.1081731
> cor.test(x,y)$p.value
[1] 0.1081731

我在探索类似问题的建议解决方案时遇到了这个问题;我认为,为了将来的参考,它可能是值得更新可用的答案列表与解决方案利用扫帚包。

示例代码

x = cumsum(c(0, runif(100, -1, +1)))
y = cumsum(c(0, runif(100, -1, +1)))
fit = lm(y ~ x)
require(broom)
glance(fit)

结果

>> glance(fit)
  r.squared adj.r.squared    sigma statistic    p.value df    logLik      AIC      BIC deviance df.residual
1 0.5442762     0.5396729 1.502943  118.2368 1.3719e-18  2 -183.4527 372.9055 380.7508 223.6251          99

一边笔记

我发现glance函数很有用,因为它简洁地总结了关键值。结果被存储为data.frame,这使得进一步的操作很容易:

>> class(glance(fit))
[1] "data.frame"