我想逐行读取一个大文件(>5GB),而不将其全部内容加载到内存中。我不能使用readlines(),因为它在内存中创建了一个非常大的列表。


当前回答

blaze项目在过去6年里取得了长足的进展。它有一个简单的API,涵盖了pandas功能的一个有用子集。

dask。Dataframe内部负责分块,支持许多可并行操作,并允许您轻松地将切片导出回pandas,以便在内存中操作。

import dask.dataframe as dd

df = dd.read_csv('filename.csv')
df.head(10)  # return first 10 rows
df.tail(10)  # return last 10 rows

# iterate rows
for idx, row in df.iterrows():
    ...

# group by my_field and return mean
df.groupby(df.my_field).value.mean().compute()

# slice by column
df[df.my_field=='XYZ'].compute()

其他回答

如果你在文件中没有换行符,你可以这样做:

with open('large_text.txt') as f:
  while True:
    c = f.read(1024)
    if not c:
      break
    print(c,end='')

请试试这个:

with open('filename','r',buffering=100000) as f:
    for line in f:
        print line

这是我找到的最佳解决方案,我在330 MB的文件上尝试了一下。

lineno = 500
line_length = 8
with open('catfour.txt', 'r') as file:
    file.seek(lineno * (line_length + 2))
    print(file.readline(), end='')

其中line_length是单行中的字符数。例如,“abcd”的行长为4。

我添加了2个行长来跳过'\n'字符并移动到下一个字符。

当您希望并行工作并只读取数据块,但要用新行保持数据整洁时,这可能很有用。

def readInChunks(fileObj, chunkSize=1024):
    while True:
        data = fileObj.read(chunkSize)
        if not data:
            break
        while data[-1:] != '\n':
            data+=fileObj.read(1)
        yield data

最好使用迭代器。 相关:fileinput -迭代多个输入流中的行。

从文档中可以看出:

import fileinput
for line in fileinput.input("filename", encoding="utf-8"):
    process(line)

这将避免将整个文件一次复制到内存中。