我想逐行读取一个大文件(>5GB),而不将其全部内容加载到内存中。我不能使用readlines(),因为它在内存中创建了一个非常大的列表。


当前回答

我不敢相信这能像@john-la-rooy的回答看起来那么简单。因此,我使用逐行读写重新创建了cp命令。这是疯狂的快。

#!/usr/bin/env python3.6

import sys

with open(sys.argv[2], 'w') as outfile:
    with open(sys.argv[1]) as infile:
        for line in infile:
            outfile.write(line)

其他回答

谢谢你!我最近已经转换到python 3,并对使用readlines(0)读取大文件感到沮丧。这就解决了问题。但是为了得到每一行,我必须做一些额外的步骤。每一行之前都有一个“b”,我猜这是二进制格式的。使用“decode(utf-8)”将其更改为ascii。

然后我必须在每行中间删除一个“=\n”。

然后我在新线处把线分开。

b_data=(fh.read(ele[1]))#endat This is one chunk of ascii data in binary format
        a_data=((binascii.b2a_qp(b_data)).decode('utf-8')) #Data chunk in 'split' ascii format
        data_chunk = (a_data.replace('=\n','').strip()) #Splitting characters removed
        data_list = data_chunk.split('\n')  #List containing lines in chunk
        #print(data_list,'\n')
        #time.sleep(1)
        for j in range(len(data_list)): #iterate through data_list to get each item 
            i += 1
            line_of_data = data_list[j]
            print(line_of_data)

下面是Arohi代码中“打印数据”上方的代码。

老派方法:

fh = open(file_name, 'rt')
line = fh.readline()
while line:
    # do stuff with line
    line = fh.readline()
fh.close()

我不敢相信这能像@john-la-rooy的回答看起来那么简单。因此,我使用逐行读写重新创建了cp命令。这是疯狂的快。

#!/usr/bin/env python3.6

import sys

with open(sys.argv[2], 'w') as outfile:
    with open(sys.argv[1]) as infile:
        for line in infile:
            outfile.write(line)

blaze项目在过去6年里取得了长足的进展。它有一个简单的API,涵盖了pandas功能的一个有用子集。

dask。Dataframe内部负责分块,支持许多可并行操作,并允许您轻松地将切片导出回pandas,以便在内存中操作。

import dask.dataframe as dd

df = dd.read_csv('filename.csv')
df.head(10)  # return first 10 rows
df.tail(10)  # return last 10 rows

# iterate rows
for idx, row in df.iterrows():
    ...

# group by my_field and return mean
df.groupby(df.my_field).value.mean().compute()

# slice by column
df[df.my_field=='XYZ'].compute()

请试试这个:

with open('filename','r',buffering=100000) as f:
    for line in f:
        print line