当我试图理解CAP中的“Availability”(A)和“Partition tolerance”(P)时,我发现很难理解各种文章的解释。

我有一种感觉,a和P可以同时出现(我知道事实并非如此,这就是我不能理解的原因!)

简单地解释一下,什么是A和P以及它们之间的区别?


当前回答

理解CAP定理的简单方法:

In case of network partition, one needs to choose between perfect availability and perfect consistency. Picking consistency means not being able to answer a client's query as the system cannot guarantee to return the most recent write. This sacrifices availability. Picking availability means being able to respond to a client's request but the system cannot guarantee consistency, i.e., the most recent value written. Available systems provide the best possible answer under the given circumstance.

这个解释来自这篇优秀的文章。希望能有所帮助。

其他回答

简单的CAP定理指出,分布式系统不可能同时提供所有三个保证:

一致性

每个节点同时包含相同的数据

可用性

每次必须至少有一个节点可用以提供数据

分区容忍

系统的故障是非常罕见的

大多数情况下,每个系统只能保证至少两个特性:CA、AP或CP。

一致性:

对于给定的客户端,读操作保证返回最近的写操作(如ACID)。如果在此期间有任何请求,则必须等待节点之间/节点内的数据同步完成。


可用性:

每个节点(如果没有失败)总是执行查询,并且应该总是响应请求。它是否返回最新的副本并不重要。


Partition-tolerance:

当发生网络分区时,系统将继续工作。


关于AP,可用性(始终可访问)可以与(Cassendra)或 没有(RDBMS)分区容忍

图片来源

根据上图C是断开的,但A,B, D可以继续工作。现在我们可以调用系统部分工作(分区容忍)。

假设一个特定的事务只需要a、B和d,系统可以执行它而不会产生任何不一致。

但是当C必须参与一个特定的事务时,系统可以以两种方式执行。

1.由于C不可用,A可以拒绝用户请求。

So the system has Partition-Tolerance and consistency (P,C).
But no availability, because of the rejection.

2.A可以将C接收到的消息保存在A的本地内存中,并在C连接回来时传输。

So the system has Partition-Tolerance and availability (P,A).
But no consistency.because C has not updated.

以下是我讨论CAP的方式,特别是关于P。

CA只有在单机数据库(可能有复制,但所有数据都在一个“故障块”上-服务器不被认为是部分故障)的情况下才可能使用。

如果您的问题需要向外扩展、分布式和多服务器,则可能发生网络分区。您已经需要p了,我所处理的问题中很少有适用于总是单服务器的范例(或者,如Stonebraker所说,“分布式是桌面赌注”)。如果您能找到CA问题,那么像传统的非向外扩展RDBMS这样的解决方案将提供很多好处。

对我来说,罕见:所以我们继续讨论AP和CP。

当您有分区时,只能在AP操作和CP操作之间进行选择。如果网络和硬件运行正常,你就能得到你的蛋糕并吃掉它。

让我们讨论AP / CP的区别。

AP -当有网络分区时,让独立的部分自由运行。

CP——当存在网络分区时,关闭节点或禁止读写,这样就会出现确定性故障。

我喜欢能两者兼顾的架构,因为有些问题是AP问题,有些是CP问题,而有些数据库可以两者兼顾。在CP和AP解决方案中,也有一些微妙之处。

例如,在AP数据集中,您可能同时存在不一致的读取和生成写入冲突-这是两种不同的AP模式。您的系统是否可以配置为具有高读可用性但不允许写冲突的AP ?或者您的AP系统可以接受写入冲突,具有强大而灵活的解决系统?你最终需要两者吗,或者你可以选择一个只做其中一个的系统?

在CP系统中,小分区(单个服务器)的不可用性有多少?更大的复制会增加CP系统中的不可用性,系统如何处理这些权衡?

这些都是CP和AP要问的问题。

现在在这个领域有一个很好的阅读是Brewer的“12年后”的帖子。我相信这将清晰地推进CAP辩论,并强烈推荐它。

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

将P与C和A等同看待是一个错误,而C、A、P之间的“三选二”概念是具有误导性的。我解释CAP定理的简洁方式是,“在分布式数据存储中,在网络分区时,你必须在一致性或可用性中选择一个,并且不能两者兼得”。新的NoSQL系统正试图关注可用性,而传统的ACID数据库则更关注一致性。

你真的不能选择CA,网络分区不是任何人都想要的,它只是分布式系统的一个不受欢迎的现实,网络可能会失败。问题是,当这种情况发生时,你如何权衡你的应用程序。第一个提出这个术语的人的这篇文章似乎很清楚地解释了这一点。