当我试图理解CAP中的“Availability”(A)和“Partition tolerance”(P)时,我发现很难理解各种文章的解释。

我有一种感觉,a和P可以同时出现(我知道事实并非如此,这就是我不能理解的原因!)

简单地解释一下,什么是A和P以及它们之间的区别?


当前回答

一致性:

对于给定的客户端,读操作保证返回最近的写操作(如ACID)。如果在此期间有任何请求,则必须等待节点之间/节点内的数据同步完成。


可用性:

每个节点(如果没有失败)总是执行查询,并且应该总是响应请求。它是否返回最新的副本并不重要。


Partition-tolerance:

当发生网络分区时,系统将继续工作。


关于AP,可用性(始终可访问)可以与(Cassendra)或 没有(RDBMS)分区容忍

图片来源

其他回答

将P与C和A等同看待是一个错误,而C、A、P之间的“三选二”概念是具有误导性的。我解释CAP定理的简洁方式是,“在分布式数据存储中,在网络分区时,你必须在一致性或可用性中选择一个,并且不能两者兼得”。新的NoSQL系统正试图关注可用性,而传统的ACID数据库则更关注一致性。

你真的不能选择CA,网络分区不是任何人都想要的,它只是分布式系统的一个不受欢迎的现实,网络可能会失败。问题是,当这种情况发生时,你如何权衡你的应用程序。第一个提出这个术语的人的这篇文章似乎很清楚地解释了这一点。

一致性意味着整个集群中的数据是相同的,因此您可以从/写入任何节点并获得相同的数据。

可用性意味着即使集群中的某个节点宕机,也能够访问集群。

分区容忍意味着即使两个节点之间存在“分区”(通信中断)(两个节点都在工作,但不能通信),集群也能继续工作。

为了同时获得可用性和分区容忍,您必须放弃一致性。考虑一下在master-master设置中是否有两个节点X和Y。现在,X和Y之间的网络通信中断了,所以它们不能同步更新。此时你可以:

A)允许节点不同步(放弃一致性),或者

B)认为集群“关闭”(放弃可用性)

所有可用的组合是:

CA - data is consistent between all nodes - as long as all nodes are online - and you can read/write from any node and be sure that the data is the same, but if you ever develop a partition between nodes, the data will be out of sync (and won't re-sync once the partition is resolved). CP - data is consistent between all nodes, and maintains partition tolerance (preventing data desync) by becoming unavailable when a node goes down. AP - nodes remain online even if they can't communicate with each other and will resync data once the partition is resolved, but you aren't guaranteed that all nodes will have the same data (either during or after the partition)

您应该注意,CA系统实际上并不存在(即使有些系统声称存在)。

根据CAP定理,分布式系统有三个特征:

一致性(C)表示所有系统组件具有相同的信息。

系统的可用性(A)意味着它不会因为另一个系统故障而停止工作。

分区容差(P)表示在任意网络包丢失的情况下,系统将继续工作。

根据CAP定理,一个系统最多只能有这三个特征中的两个。(ap, cp, ca)

我找了很多环节,但是没有一个环节能给我满意的答案,只有一个环节。

因此,我用非常简单的语言描述CAP。

Consistency: Must return same Data, regardless to from which node is it coming. Availability: Node should respond (must be available). Partition Tolerance: Cluster should respond (must be available), even if there is a a partition (i.e. network failure) between nodes. ( Also one main reason it confuses more is bad naming convention of it. If I had right, I might have given DNC theorem instead: Data Consistency, Node Availability, Cluster Availability, where each corresponds to Consistency, Availability and Partition Tolerance respectively )

CP数据库:CP数据库以牺牲可用性为代价提供一致性和分区容忍。当任意两个节点之间发生分区时,系统必须关闭不一致的节点(即使其不可用),直到分区被解决。

AP数据库:AP数据库提供了可用性和分区容忍,但牺牲了一致性。当分区发生时,所有节点仍然可用,但那些在分区错误一端的节点可能返回比其他节点更旧的数据版本。(当分区被解析时,AP数据库通常会重新同步节点,以修复系统中的所有不一致。)

CA数据库:CA数据库提供跨所有节点的一致性和可用性。但是,如果系统中的任意两个节点之间存在分区,则无法做到这一点,因此无法提供容错功能。在分布式系统中,分区是不可避免的。因此,虽然我们可以在理论上讨论CA分布式数据库,但出于所有实际目的,CA分布式数据库可以存在,但不应该存在。

因此,这并不意味着如果需要,就不能为分布式应用程序提供CA数据库。许多关系数据库,如PostgreSQL,提供一致性和可用性,并可以使用复制部署到多个节点。

来源:https://www.ibm.com/cloud/learn/cap-theorem

以下是我讨论CAP的方式,特别是关于P。

CA只有在单机数据库(可能有复制,但所有数据都在一个“故障块”上-服务器不被认为是部分故障)的情况下才可能使用。

如果您的问题需要向外扩展、分布式和多服务器,则可能发生网络分区。您已经需要p了,我所处理的问题中很少有适用于总是单服务器的范例(或者,如Stonebraker所说,“分布式是桌面赌注”)。如果您能找到CA问题,那么像传统的非向外扩展RDBMS这样的解决方案将提供很多好处。

对我来说,罕见:所以我们继续讨论AP和CP。

当您有分区时,只能在AP操作和CP操作之间进行选择。如果网络和硬件运行正常,你就能得到你的蛋糕并吃掉它。

让我们讨论AP / CP的区别。

AP -当有网络分区时,让独立的部分自由运行。

CP——当存在网络分区时,关闭节点或禁止读写,这样就会出现确定性故障。

我喜欢能两者兼顾的架构,因为有些问题是AP问题,有些是CP问题,而有些数据库可以两者兼顾。在CP和AP解决方案中,也有一些微妙之处。

例如,在AP数据集中,您可能同时存在不一致的读取和生成写入冲突-这是两种不同的AP模式。您的系统是否可以配置为具有高读可用性但不允许写冲突的AP ?或者您的AP系统可以接受写入冲突,具有强大而灵活的解决系统?你最终需要两者吗,或者你可以选择一个只做其中一个的系统?

在CP系统中,小分区(单个服务器)的不可用性有多少?更大的复制会增加CP系统中的不可用性,系统如何处理这些权衡?

这些都是CP和AP要问的问题。

现在在这个领域有一个很好的阅读是Brewer的“12年后”的帖子。我相信这将清晰地推进CAP辩论,并强烈推荐它。

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed