我有一个数据框架:
s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])
df = pd.DataFrame([list(s1), list(s2)], columns = ["A", "B", "C"])
A B C
0 5 6 7
1 7 8 9
[2 rows x 3 columns]
并且我需要添加第一行[2,3,4],得到:
A B C
0 2 3 4
1 5 6 7
2 7 8 9
我尝试过append()和concat()函数,但找不到正确的方法。
如何添加/插入系列数据帧?
我突然想到,也许T属性是一个有效的选择。转置,可以避开误导人的df。Loc[-1] =[2,3,4],就像@flow2k提到的那样,它适用于更通用的情况,比如你想在任意行之前插入[2,3,4],这是concat(),append()难以实现的。没有必要为定义和调试函数而费心。
a = df.T
a.insert(0,'anyName',value=[2,3,4])
# just give insert() any column name you want, we'll rename it.
a.rename(columns=dict(zip(a.columns,[i for i in range(a.shape[1])])),inplace=True)
# set inplace to a Boolean as you need.
df=a.T
df
A B C
0 2 3 4
1 5 6 7
2 7 8 9
我想这可以部分解释@MattCochrane抱怨为什么pandas没有像insert()那样插入一行的方法。
下面是在不排序和重置索引的情况下将一行插入pandas数据框架的最佳方法:
import pandas as pd
df = pd.DataFrame(columns=['a','b','c'])
def insert(df, row):
insert_loc = df.index.max()
if pd.isna(insert_loc):
df.loc[0] = row
else:
df.loc[insert_loc + 1] = row
insert(df,[2,3,4])
insert(df,[8,9,0])
print(df)
我把一个简短的函数放在一起,在插入一行时允许更多的灵活性:
def insert_row(idx, df, df_insert):
dfA = df.iloc[:idx, ]
dfB = df.iloc[idx:, ]
df = dfA.append(df_insert).append(dfB).reset_index(drop = True)
return df
可以进一步缩写为:
def insert_row(idx, df, df_insert):
return df.iloc[:idx, ].append(df_insert).append(df.iloc[idx:, ]).reset_index(drop = True)
然后你可以使用如下语句:
df = insert_row(2, df, df_new)
其中2是df中要插入df_new的索引位置。
s1 = pd.Series([5, 6, 7])
s2 = pd.Series([7, 8, 9])
df = pd.DataFrame([list(s1), list(s2)], columns = ["A", "B", "C"])
要在任意位置插入新行,可以指定行位置:
Row_pos = -1用于在顶部插入
或者row_pos = 0.5用于在第0行和第1行之间插入。
row_pos = -1
insert_row = [2,3,4]
df.loc[row_pos] = insert_row
df = df.sort_index()
df = df.reset_index(drop = True)
row_pos = -1
The outcome is:
A B C
0 2 3 4
1 5 6 7
2 7 8 9
row_pos = 0.5
The outcome is:
A B C
0 5 6 7
1 2 3 4
2 7 8 9